Artificial hydrocarbon networks fuzzy inference systems for CNC machines position controller

  • Arturo Molina
  • Hiram PonceEmail author
  • Pedro Ponce
  • Guillermo Tello
  • Miguel Ramírez


This paper proposes a novel position controller for computer numerical control (CNC) machines based on a hybrid fuzzy inference system that uses artificial hydrocarbon networks in its defuzzification step, so-called fuzzy-molecular inference system. The fuzzy-molecular-based position controller is characterized to improve the accuracy in position and the time machining. In order to prove these characteristics, a case study was run over a reconfigurable micromachine tool (RmMT) assembly in lathe configuration. In addition, a workpiece machining in the RmMT assembly serves to realize a comparative analysis between the proposed controller and three other controllers: a classical PID controller manually tuned, a PID controller auto-tuned, and a fuzzy Mamdani controller. Experimental results validate the performance and the implementability of the proposed fuzzy-molecular position controller against the others.


Artificial hydrocarbon networks Position controller PID controller CNC machines Fuzzy inference controller 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huo F, Poo AN (2012) Precision contouring control of machine tools. Int J Adv Manuf Technol 64(1–4):319–333Google Scholar
  2. 2.
    Iancu I (2012) Fuzzy logic: controls, concepts, theories and applications, chap. A Mamdani type fuzzy logic controller. InTech, pp 325–350Google Scholar
  3. 3.
    Koren Y, Lo CC (1992) Advanced controllers for feed drives. CIRP Ann Manuf Technol 41(2):689–698CrossRefGoogle Scholar
  4. 4.
    Kwon SJ, Chung WK (2004) Perturbation compensator based robust tracking control and state estimation of mechanical systems. In: Lecture notes in control and information sciences, vol 307. SpringerGoogle Scholar
  5. 5.
    Lacerda HB, Belo EM (1999) Application of a PID+fuzzy controller on the motion control system in machine tools. J Braz Soc Mech Sci 21(3)CrossRefGoogle Scholar
  6. 6.
    Lin FJ, Shen PH (2006) Robust fuzzy neural network sliding-mode control for two-axis motion control system. IEEE Trans Ind Electron 53(4):1209–1225CrossRefGoogle Scholar
  7. 7.
    Ling X, Li Q, Wang T, Dong J, Tang Z, Ding Y (2011) Research and design of motion controller for CNC based on fuzzy PID algorithm with feedforward control. In: 2011 international conference on control, automation and systems engineering (CASE). Singapore, pp 1–4Google Scholar
  8. 8.
    Luggen WW (1988) Fundamentals of numerical control. DelmarGoogle Scholar
  9. 9.
    Malhotra R, Cao J, Beltran M, Xu D, Magargee J, Kiridena V, Xia ZX (2012) Accumulative-DSIF strategy for enhancing process capabilities in incremental forming. Ann CIRP 61(1):251–254CrossRefGoogle Scholar
  10. 10.
    Malhotra R, Xue L, Belytschko T, Cao J (2012) Mechanics of fracture in single point incremental forming. J Mater Proc Technol 212(1):1573–1590CrossRefGoogle Scholar
  11. 11.
    Molina A, Ramírez M (2011) Micro Máquina Didáctica reconfigurable. No. MX/a/2011/013481 in patent application. Mexican Institute of Intellectual Property (IMPI), Mexico CityGoogle Scholar
  12. 12.
    Molina A, Ramírez M, Pérez R, Tello G (2012) Estudio de controladores de movimiento CNC para micro máquinas herramienta. XVI Scientific Convention of Engineering and Architecture (CUJAE). HabanaGoogle Scholar
  13. 13.
    Nof SY (ed) (2009) Springer handbook of automation. Springer, BerlinzbMATHGoogle Scholar
  14. 14.
    Ogata K (2002) Modern control engineering. Prentice Hall, Upper Saddle RiverzbMATHGoogle Scholar
  15. 15.
    Pérez R, Davila O, Molina A, Ramírez M (2013) Reconfigurable micro-machine tool design for desktop machining micro-factories. In: 2013 IFAC conference on manufacturing modelling, management, and control, vol 7-1. St. Petersburg, pp 1417–1422Google Scholar
  16. 16.
    Pohlak M, Küttner R, Majak J (2005) Modelling and optimal design of sheet metal RP&M processes. Rapid Prototyp J 11(5):304–311CrossRefGoogle Scholar
  17. 17.
    Ponce H, Ponce P (2012) Artificial hydrocarbon networks: a new algorithm bio-inspired on organic chemistry. Int J Artif Intell Computat Res (IJAICR) 4(1):39–51Google Scholar
  18. 18.
    Ponce H, Ponce P, Molina A (2013) Artificial hydrocarbon networks fuzzy inference system. Math Probl Eng 2013:1–13CrossRefGoogle Scholar
  19. 19.
    Ponce H, Ponce P, Molina A (2014) Artificial organic networks: artificial intelligence based on carbon networks. In: Studies in computational intelligence, vol 521. Springer, SwitzerlandGoogle Scholar
  20. 20.
    Ramírez M, Miranda J, Davila O, Tello G, Molina A (2011) Reconfigurable didactic microfactory with universal numerical control. In: 14th IFAC symposium on information control problems in manufacturing, vol 14-1. Bucharest, pp 463–468Google Scholar
  21. 21.
    Shih YT, Chen CS, Lee AC (2002) A novel cross-coupling control design for bi-axis motion. Int J Mach Tool Manuf 42(14):1539–1548CrossRefGoogle Scholar
  22. 22.
    Suh SH, Kang SK, Chung DH, Stroud I (2008) Theory and design of CNC systems. Springer series in advanced manufacturing. Springer, LondonGoogle Scholar
  23. 23.
    Susanu M, Dumur D (2005) Using predictive techniques within CNC machine tools feed drives. In: 44th IEEE conference on decision and control and 2005 European control conference CDC-ECC05, pp 5150–5155Google Scholar
  24. 24.
    Wu SH, Reis A, Pires FMA, Santos AD, da Rocha AB (2012) Study of tool trajectory in incremental forming. Adv Mater Res 472–475:1586–1591CrossRefGoogle Scholar
  25. 25.
    Yuan J, Ni J (1998) The real-time error compensation technique for cnc machining systems. ELSEVIER Mechatron 8(4):359–380CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Arturo Molina
    • 1
  • Hiram Ponce
    • 1
    Email author
  • Pedro Ponce
    • 1
  • Guillermo Tello
    • 1
  • Miguel Ramírez
    • 1
  1. 1.Graduate School of EngineeringTecnológico de MonterreyMexico CityMexico

Personalised recommendations