An approach to modelling evaporation pulsed laser drilling and its energy efficiency

  • Georgios Pastras
  • Apostolos Fysikopoulos
  • Panagiotis Stavropoulos
  • George ChryssolourisEmail author


Laser drilling is a thermal process with relatively low energy efficiency since the material removal mechanism is mostly based either on melting or on vaporization. Aiming at the investigation of the laser drilling efficiency, a theoretical both analytical and numerical study of evaporation pulsed laser drilling is presented. The analysis is based on a linear approximation of the temperature profile and separates the process into three phases, those of the heating, the melting and the vaporization. Based on these models, the energy efficiency and its dependence on the process parameters have been investigated and selection of relevant process variable guidelines, towards improving energy efficiency, are given. Moreover, the physical mechanisms responsible for most of the energy losses are analysed and classified according to their importance.


Laser beam machining Drilling Process modelling Energy efficiency Sustainable manufacturing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    International Energy Agency (2012) Worldwide engagement for sustainable energy strategies. Accessed 29 Oct 2013
  2. 2.
    Allen D, Bauer D, Bras B, Gutowski T, Murphy C, Piwonka T (2002) Environmentally benign mnufacturing: trends in Europe, Japan, and the USA. ASME J Manuf Sci Eng 124:908–920CrossRefGoogle Scholar
  3. 3.
    International Energy Agency (2012) Energy technology perspectives 2012 pathways to a clean energy system, executive summary. Accessed 29 Oct 2013
  4. 4.
    Fysikopoulos A, Stavropoulos P, Salonitis K, Chryssoloyris G (2012) Energy efficiency assessment of laser drilling process. Phys Procedia 39:776–783CrossRefGoogle Scholar
  5. 5.
    Fysikopoulos A, Papacharalampopoulos A, Pastras G, Stavropoulos P, Chryssolouris G (2013) Energy efficiency of manufacturing processes: a critical review. Procedia CIRP 7:628–633CrossRefGoogle Scholar
  6. 6.
    Chryssolouris G (1991) Laser machining: theory and practice. SpringerGoogle Scholar
  7. 7.
    Ready JF (2001) LIA, Handbook of laser materials processing. Laser Institute of America, Magnolia Publishing Inc., USAGoogle Scholar
  8. 8.
    Ganesh RK, Faghri A, Hahn Y (1997) A generalized thermal modeling for laser drilling process-I. Mathematical modeling and numerical methodology. Int J Heat Mass Transf 40:3351–3360CrossRefGoogle Scholar
  9. 9.
    Yilbas BS, Sahin AZ, Davies R (1995) Laser heating mechanism including evaporation process initiating laser drilling. Int J Mach Tools Manuf 35:1047–1062CrossRefGoogle Scholar
  10. 10.
    Allmen M (1976) Laser drilling velocity in metals. J Appl Phys 47:5460–5463CrossRefGoogle Scholar
  11. 11.
    Conde JC, Lusquinos F, Gonzalez P, Leon B, Perez-Amor M (2001) Temperature distribution in laser marking. J Laser Appl 13:105–110CrossRefGoogle Scholar
  12. 12.
    Ganesh RK, Faghri A, Hahn Y (1997) A generalized thermal modeling for laser drilling process. II. Numerical simulation and results. Int J Heat Mass Transf 40:3361–3373CrossRefGoogle Scholar
  13. 13.
    Tokarev VN, Lopez J, Lazare S (2000) Modeling of high-aspect ratio microdrilling of polymers with UV laser ablation. Appl Surf Sci 168:75–78CrossRefGoogle Scholar
  14. 14.
    Cheng CF, Tsui YC, Clyne TW (1998) Application of a three-dimensional heat flow model to treat laser drilling of carbon fibre composites. Acta Mater 46:4273–4285CrossRefGoogle Scholar
  15. 15.
    Radley OW, Swope WC (1992) Laser drilling with focusedGaussian beams. J Appl Phys 72:3686–3696CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Faghri A (1999) Vaporization, melting and heat conduction in the laser drilling process. Int J Heat Mass Transf 42:1775–1790CrossRefGoogle Scholar
  17. 17.
    Chryssolouris G, Sheng P, Choi WC (1990) Three dimensional laser machining of composite materials. J Eng Mater Technol 112:387–392CrossRefGoogle Scholar
  18. 18.
    Solana P, Kapadia P, Dowden JM, Marsden PJ (1999) An analytical model for the laser drilling of metals with absorption within the vapor. J Phys D: Appl Phys 32:942–952CrossRefGoogle Scholar
  19. 19.
    Tosto S (1999) Modeling and computer simulation of pulsed laser-induced ablation. J Appl Phys A 68:439–446CrossRefGoogle Scholar
  20. 20.
    Salonitis K, Stournaras A, Tsoukantas G, Stavropoulos P, Chryssolouris G (2007) A theoretical and experimental investigation on limitations of pulsed laser drilling. J Mater Process Technol 183:96–103CrossRefGoogle Scholar
  21. 21.
    Dietmair A, Verla A (2009) A generic energy consumption model for decision making and energy efficiency optimization in manufacturing. Int J Sustain Eng 2:123–133CrossRefGoogle Scholar
  22. 22.
    Rothenberg S, Schenck B, Maxwell J (2005) Lessons from benchmarking environmental performance at automobile assembly plants. Benchmarking: Int J 12(1):5–15CrossRefGoogle Scholar
  23. 23.
    Unander F (2007) Decomposition of manufacturing energy use in IEA countries. How do recent developments compare with historical long-term trends? Appl Energy 84:771–780CrossRefGoogle Scholar
  24. 24.
    Thiede S, Bogdanski G, Herrmann C (2012) A systematic method for increasing the energy and resource efficiency in manufacturing companies. Procedia CIRP 2:28–33CrossRefGoogle Scholar
  25. 25.
    Herrmann C, Thiede S, Kara S, Hesselbach J (2011) Energy oriented simulation of manufacturing systems—concept and application. CIRP Annals - Manuf Technol 60:45–48CrossRefGoogle Scholar
  26. 26.
    Seow Y, Rahimifard S (2011) A framework for modelling energy consumption within manufacturing systems. CIRP J Manuf Sci Technol 4:258–264CrossRefGoogle Scholar
  27. 27.
    Duflou JR, Kellens K, Guo Y, Dewulf W (2012) Critical comparison of methods to determine the energy input for discrete manufacturing processes. CIRP Ann - Manuf Technol 61:63–66CrossRefGoogle Scholar
  28. 28.
    Fysikopoulos A, Anagnostakis D, Salonitis K, Chryssolouris G (2012) An empirical study of the energy consumption in automotive assembly. In: 45th CIRP conference on manufacturing system, pp 540–547CrossRefGoogle Scholar
  29. 29.
    Weinert N, Chiotellis S, Seliger G (2011) Methodology for planning and operating energy-efficient production systems. CIRP Ann - Manuf Technol 60:41–44CrossRefGoogle Scholar
  30. 30.
    Dörr M, Wahren S, Bauernhansl T (2013) Methodology for energy efficiency on process level. Procedia CIRP 7:652–657CrossRefGoogle Scholar
  31. 31.
    Li W, Winter M, Kara S, Herrmann C (2012) Eco-efficiency of manufacturing processes: a grinding case. CIRP Ann - Manuf Technol 61:59–62CrossRefGoogle Scholar
  32. 32.
    Mori M, Fujishima M, Inamasu Y, Oda Y (2011) A study on energy efficiency improvement for machine tools. CIRP Ann - Manuf Technol 60:145–148CrossRefGoogle Scholar
  33. 33.
    Dahmen M, Gdkkurt O, Kaierle S (2010) The ecological footprint of laser beam welding. Phys Procedia 5:19–28CrossRefGoogle Scholar
  34. 34.
    Kaierle S, Dahmen M, Gdkkurt O (2011) Eco-efficiency of laser welding applications. Proc SPIE 8065:80650T. doi: 10.1117/12.888794 CrossRefGoogle Scholar
  35. 35.
    Eisenbeis T, Herfurth H, Heinemann S, Rekow M, Murison R (2010) Laser process optimization for improving emitter wrap through drilling rates. In: 35th IEEE PVSCGoogle Scholar
  36. 36.
    Loktionov EY, Ovchinnikov AV, Protasov YY, Sitnikov DS (2011) Experimental investigation on spectral energy efficiency of femtosecond laser ablation of metals. Plasma Phys Rep 13:1208–1214CrossRefGoogle Scholar
  37. 37.
    Daub R, Wiedenmann R, Mahrle A, Duong J, Zaeh MF (2010) Influence on the efficiency of the heat conduction mode laser beam welding process regarding different laser spot geometries. ICALEO 2010:200–208Google Scholar
  38. 38.
    ASM International (1990) ASM handbook volume 1, 10th edn. ASM InternationalGoogle Scholar
  39. 39.
    Holman JP (1997) Heat transfer, 8th edn. McGraw-Hill IncGoogle Scholar
  40. 40.
    Gutowski T, Dahmus J, Thiriez A (2006) Electrical energy requirements for manufacturing processes. In: 13th CIRP international conference on life cycle engineeringGoogle Scholar
  41. 41.
    Gutowski T, Dahmus J, Thiriez A, Branham M, Jones A (2007) A thermodynamic characterization of manufacturing processes. In: Proceedings of the 2007 IEEE international symposium on electronics and the environment. doi: 10.1109/ISEE.2007.369382
  42. 42.
    Bakshi B, Gutowski TG, Sekulic DP (2011) Thermodynamics and the destruction of resources. Cambridge University Press, New York, pp 163–189CrossRefGoogle Scholar
  43. 43.
    Renaldi Kellens K, Dewulf W, Duflou JR (2012) On the implementation of energy efficiency metrics in discrete manufacturing system: tche dissipative nature of production processes. Leveraging technology for a sustainable world 2012, pp 545–550CrossRefGoogle Scholar
  44. 44.
    Dahotre NB, Harimkar SP (2008) Laser fabrication and machining of materials. SpringerGoogle Scholar
  45. 45.
    Boulmer-Leborgne C, Hermann J, Dubreuil B (1993) Plasma formation resulting from the interaction of a laser beam with a solid metal target in an ambient gas. Plasma sources Sci Technol 2:219–226CrossRefGoogle Scholar
  46. 46.
    Kar A, Mazumder J (1990) Two-dimensional model for material damage due to melting and vaporization during laser irradiation. J Appl Phys 68:3884–3891CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • Georgios Pastras
    • 1
  • Apostolos Fysikopoulos
    • 1
  • Panagiotis Stavropoulos
    • 1
  • George Chryssolouris
    • 1
    Email author
  1. 1.Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatraGreece

Personalised recommendations