Skip to main content
Log in

Analysis of residual stress and work-hardened profiles on Inconel 718 when face turning with large-nose radius tools

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Surface integrity (SI) and, particularly, the residual stress profile, has a great influence on the fatigue life of machined aeronautical critical parts. Among the different cutting parameters that affect the final SI, tool geometry is one of the most important factors. In particular, tool nose radius determines the surface roughness, as well as the thermoplastic deformation of the workpiece. Indeed, the use of large tool nose radius in the industry enables (1) increasing the feed rate while keeping the roughness values below specifications and (2) reducing the influence of the tool wear in the surface roughness. Therefore, in this study, the influence of tool nose radius in the induced residual stress profile and work-hardened layer when face turning Inconel 718 is analysed for a cutting speed range between (30–70 m/min) and a feed rate range of (0.15–0.25 mm/rev). For this purpose, residual stress profiles and work-hardened layer were measured by x-ray diffraction method after machining with a 4 mm nose radius. Then, results have been compared against different tool nose radius studies carried out by other authors for the specified working conditions. Results revealed that residual stress profiles varied when machining with different nose radius for the studied range. In particular, the increase of the nose radius brought to a higher difference between surface tensile stress and subsurface compressive peak stress, which is attributed to an increase of the thermal effect. Moreover, thicker work-hardened layer (around 100 μm) was observed when machining with large-nose radius for the studied working conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winstone MR, Brooks JW (2008) Advanced high temperature materials: aeroengine fatigue. Cienc Tecnol Mater 20(1):15–24

    Google Scholar 

  2. Ezugwu EO (2004) High speed machining of aero-engine alloys. J Braz Soc Mech Sci Eng 26(1):1–11. doi:10.1590/S1678-58782004000100001

    Article  Google Scholar 

  3. Miller S (1996) Advanced materials mean advanced engines. Interdiscip Sci Rev 21(2):117–129. doi:10.1179/030801896789845671

    Article  Google Scholar 

  4. Thakur DG, Ramamoorthy L, Vijayaraghavan L (2009) Machinability investigation of Inconel 718 in high-speed turning. Int J Adv Manuf Technol 45:421–429. doi:10.1007/s00170-009-1987-x

    Article  Google Scholar 

  5. Wallbrink C, Weiping Hu (2010) A strain-life module for CGAP: theory, user guide and examples (No. DSTO-TR-2392). Def Sci Technol Organ Vic (Aust) Air Div

  6. M’Saoubi R, Outeiro JC, Changeux B, Lebrun JL, Dias AM (1999) Residual stress analysis in orthogonal machining of standard and resulfurized AISI 316L steels. J Mater Process Technol 96(1):225–233. doi:10.1016/S0924-0136(99)00359-3

    Article  Google Scholar 

  7. Whiters PJ, Bhadeshia HKDH (2001) Residual stress. Part 1—measurement techniques. Mater Sci Technol 17(4):355–364. doi:10.1179/026708301101509980

    Article  Google Scholar 

  8. M’Saoubi R, Outeiro JC, Chandrasekaran H, Dillon OW Jr, Jawahir IS (2008) A review of surface integrity in machining and its impact on functional performance and life of machined products. Int J Sustain Manuf 1(1):203–236. doi:10.1504/IJSM.2008.019234

    Google Scholar 

  9. Guo YB, Li W, Jawahir IS (2009) Surface integrity characterization and prediction in machining of hardened and difficult-to-machine alloys: a state-of-art research review and analysis. Mach Sci Technol 13(4):437–470. doi:10.1080/10910340903454922

    Article  Google Scholar 

  10. Jawahir IS, Brinksmeier E, M’Saoubi R, Aspinwall DK, Outeiro JC, Meyer D, Umbrello D, Jayal AD (2011) Surface integrity in material removal processes: recent advances. CIRP Ann-Manuf Technol 60(2):603–626. doi:10.1016/j.cirp.2011.05.002

    Article  Google Scholar 

  11. Berruti T, Lavella M, Gola MM (2009) Residual stresses on Inconel 718 turbine shaft after turning. Mach Sci Technol 13(4):543–560. doi:10.1080/10910340903451472

    Article  Google Scholar 

  12. Sadat AB, Reddy MY (1992) Surface integrity of inconel-718 nickel-base superalloy using controlled and natural contact length tools part I: lubricated. Exp Mech 32(3):282–288. doi:10.1007/BF02319367

    Article  Google Scholar 

  13. Schlauer C, Peng RL, Odén M (2002) Residual stresses in a nickel-based superalloy introduced by turning. Mater Sci Forum 404–407:173–178. doi:10.4028/www.scientific.net/MSF.404-407.173

    Article  Google Scholar 

  14. Arunachalam RM, Mannan MA (2003) Surface finish and residual stresses in facing of age hardened INCONEL 718. Mater Sci Forum 437–438:503–506. doi:10.4028/www.scientific.net/MSF.437-438.503

    Article  Google Scholar 

  15. Sharman ARC, Hughes JI, Ridgway K (2006) An analysis of the residual stresses generated in Inconel 718 when turning. J Mater Process Technol 173(3):359–367. doi:10.1016/j.jmatprotec.2005.12.007

    Article  Google Scholar 

  16. Pawade RS, Joshi SS, Brahmankar PK (2008) Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718. Int J Mach Tools Manuf 48(1):15–28. doi:10.1016/j.ijmachtools.2007.08.004

    Article  Google Scholar 

  17. Arunachalam RM, Mannan MA, Spowage AC (2004) Residual stress and surface roughness when facing age hardened inconel 718 with CBN and ceramic cutting tools. Int J Mach Tools Manuf 44(9):879–887. doi:10.1016/j.ijmachtools.2004.02.016

    Article  Google Scholar 

  18. Coelho RT, Silva LR, Braghini A, Bezerra AA (2004) Some effects of cutting edge preparation and geometric modifications when turning INCONEL 718TM at high cutting speed. J Mater Process Technol 148(1):147–153. doi:10.1016/j.jmatprotec.2004.02.001

    Article  Google Scholar 

  19. Sharman ARC, Hughes JI, Ridgway K (2004) Workpiece surface integrity and tool life issues when turning Inconel 718TM nickel based superalloy. J Mach Sci Technol 8(3):399–414. doi:10.1081/MST-200039865

    Article  Google Scholar 

  20. Thakur DG, Ramamoorthy L, Vijayaraghavan L (2012) Effect of cutting parameters on the degree of work hardening and tool life during high-speed machining of Inconel 718. Int J Adv Manuf Technol 59:483–489. doi:10.1007/s00170-011-3529-6

    Article  Google Scholar 

  21. Ezugwu EO, Wang ZM, Okeke CI (1999) Tool life and surface integrity when machining Inconel 718 with PVD- and CVD-coated tool. Tribol Trans 42(2):353–360. doi:10.1080/10402009908982228

    Article  Google Scholar 

  22. Dogra M, Sharma VS, Dureja J (2011) Effect of tool geometry variation on finish turning. J Eng Sci Technol Rev 4:1–13

    Google Scholar 

  23. Liu M, Takagi J, Tsukuda A (2004) Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel. J Mater Process Technol 150(3):234–241. doi:10.1016/j.jmatprotec.2004.02.038

    Article  Google Scholar 

  24. Outeiro JC, Pina JC, M’Saoubi R, Pusavec F, Jawahir IS (2008) Analysis of residual stresses induced by dry turning of difficult-to-machine materials. CIRP Ann-Manuf Technol 57(1):77–80. doi:10.1016/j.cirp.2008.03.076

    Article  Google Scholar 

  25. François M, Sprauel JM, Déhan CF, James MR, Convert F, Lu J, Lebrun JL, Ji N, Hendricks RW (1996) X-ray diffraction method. In: Lu J (ed) Handbook of measurement of residual stresses. The Fairmont Press, Inc, Lilburn, pp 71–131

    Google Scholar 

  26. Prevéy PS (1987) The measurement of subsurface residual stress and cold work distributions in nickel base alloys. Residual Stress in Design, Process & Materials Selections, ed. WB Young, Metals Park, OH: Am. Soc. For Metals, pp 11–19

  27. Hoffmeister J, Schulze V, Hessert R, Koenig G (2012) Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718. Int J Mater Res 103(1):66–72

    Article  Google Scholar 

  28. Fang N, Srinivasa Pai P, Edwards N (2013) A comparative study of high-speed machining of Ti-6Al-4V and Inconel 718-part I: effect of dynamic tool edge wear on cutting forces. Int J Adv Manuf Technol. doi:10.1007/s00170-013-4981-2

    Google Scholar 

  29. Grant P, Lord J, Whitehead P, Fry T (2005) The application of fine increment hole drilling for measuring machining-induced residual stresses. Appl Mech Mater 3–4:105–110. doi:10.4028/www.scientific.net/AMM.3-4.105

    Article  Google Scholar 

  30. García Navas V, Gonzalo O, Bengoetxea I (2012) Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel. Int J Mach Tools Manuf 61:48–57

    Article  Google Scholar 

  31. Childs T, Maekawa K, Obikawa T, Yamane Y (2000) Metal machining. Theory and applications. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Madariaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madariaga, A., Esnaola, J.A., Fernandez, E. et al. Analysis of residual stress and work-hardened profiles on Inconel 718 when face turning with large-nose radius tools. Int J Adv Manuf Technol 71, 1587–1598 (2014). https://doi.org/10.1007/s00170-013-5585-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5585-6

Keyword

Navigation