Skip to main content
Log in

Position error compensation of semi-closed loop servo system using support vector regression and fuzzy PID control

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper discusses how to improve the position precision of a semi-closed loop servo system. A support vector regression algorithm is chosen to model and predict position error. The predicted error is then fed back to the input entry to compensate the error. Fuzzy PID control is introduced to adjust the controlling rule of the PID controller in the semi-closed loop servo system so as to improve the dynamic response characteristics of the servo system and reach a high degree of position precision. A case study is implemented. The simulation and experimental results show that combining the improved fuzzy control with predicted position error feedback ensures a high degree of position precision and a high degree of dynamic response characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pritschowa G, Bretschneidera J (1999) A self-tuning controller for digitally controlled electromechanical servo drives in machine tools. CIRP Ann Manuf Technol 48(1):307–312

    Article  Google Scholar 

  2. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review part I: geometric, cutting-force induced, and fixture-dependent errors. Int J Mach Tools Manuf 40(9):1235–1256

    Article  Google Scholar 

  3. Ziegert JC, Kalle P (1994) Error compensation in machine tools: a neural network approach. J Intell Manuf 5:143–151

    Article  Google Scholar 

  4. Ang JH, Goh CK, Teoh EJ, Tan KC (2007) Designing a recurrent neural network-based controller for gyro-mirror line-of-sight stabilization system using an artificial immune algorithm. Stud Comput Intell 66:189–209

    Article  Google Scholar 

  5. Yang S, Yuan J, Ni J (1996) The improvement of thermal error modeling and compensation on machine tools by CMAC neural network. Int J Mach Tools Manuf 36(4):527–537

    Article  Google Scholar 

  6. Yuan J, Ni J (1998) The real-time error compensation technique for CNC machining systems. Mechatronics 8:359–380

    Article  Google Scholar 

  7. Xie SQ, Yu PL, Sheng B, Zhou ZD (2001) An integral sliding model tracking strategy for 3d laser beam position control. Int J Adv Manuf Technol 18:633–640

    Article  Google Scholar 

  8. Jee S, Koren Y (2004) Adaptive fuzzy logic controller for feed drives of a CNC machine tool. Mechatronics 14:299–326

    Article  Google Scholar 

  9. Lertpiriyasuwat V, Berg MC (2006) Adaptive real-time estimation of end-effector position and orientation using precise measurements of end-effector position. IEEE/ASME Trans Mechatronics 11(3):304–319

    Article  Google Scholar 

  10. Yang JZ, Li ZX (2011) A novel contour error estimation for position loop-based cross-coupled control. IEEE/ASME Trans Mechatronics 16(4):643–655

    Article  Google Scholar 

  11. Ding F, Qu MC, Lin YQ (2003) Realization of PID control method in AC position servo system. Electro-Mech Eng 19:52–54

    Google Scholar 

  12. Veldhuis SC, Elbestawi MA (1995) A strategy for the compensation of error in five-axis machining. Ann CIRP 44(1):373–377

    Article  Google Scholar 

  13. Ferreira PM, Liu CR (1986) An analytical quadratic model for the geometric errors of a machine tool. J Manuf Syst 5(1):51–62

    Article  Google Scholar 

  14. Hirose N, Iwasaki M, Kawafuku M, Hirai H (2009) Initial value compensation using additional input for semi-closed control systems. IEEE Trans Ind Electron 56(3):635–641

    Article  Google Scholar 

  15. Goto S, Nakamura M (2006) Multidimensional feedforward compensator for industrial systems through pole assignment regulator and observer. IEEE Trans Ind Electron 53(3):886–894

    Article  Google Scholar 

  16. Vapnike V (1999) The Nature of Statistical Learning Theory. Springer, N. Y

    Google Scholar 

  17. Burges JC (2002) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2:121–167

    Article  Google Scholar 

  18. Chakguy P, Theodore BT, Raman S (2003) Support vector regression for determination of minimum zone. ASME J Manuf Sci E-T 125(4):736–739

    Article  Google Scholar 

  19. Keerthi SS et al (1999) “A fast iterative nearest point algorithm for support vector machine classifier design.” Indian Institute of Science Bangatolore

  20. Stella MC, Jan HG, Timothy WS (2005) Analysis of support vector regression for approximation of complex engineering analyses. J Mech Des 127(6):1076–1087

    Google Scholar 

  21. Lin YL, Hsieh JG, Wu HK, Jeng JH (2011) “Three-parameter sequential minimal optimization for support vector machines.” Neurocomputing In Press

  22. Suykens JAK, Branbanter JK, Lukas L (2002) Weighted least squares support vector machines: Robustness and spare approximation. Neurocomputing 48(1):85–105

    Article  MATH  Google Scholar 

  23. Jayadeva, Reshma K, Suresh C (2008) Regularized least squares support vector regression for the simultaneous learning of a function and its derivatives. Inform Sci 178(17):3402–3414

    Article  MATH  Google Scholar 

  24. Kapoor SG, DeVor RE, Zhu R (1998) Development of mechanistic models for the prediction of machining performance: model building methodology. Mach Sci Technol 2(1):213–238

    Article  Google Scholar 

  25. Chinnam RB (2002) Online reliability estimation for individual components using statistical degradation signal models. Qual Reliab Eng Int 18(1):53–73

    Article  Google Scholar 

  26. Theodor F, Hu SJ (2002) Impact of machining parameters on machine reliability and system productivity. ASME J Manuf Sci E-T 124(2):296–304

    Article  Google Scholar 

  27. Meng S, Yoshiharu F et al (2002) Handwritten numeral recognition using gradient and curvature of gray scale image. Pattern Recogn 35(10):2051–2059

    Article  MATH  Google Scholar 

  28. Liu CL, Masaki N (2001) Evaluation of prototype learning algorithms for nearest-neighbor classifier in application to handwritten character recognition. Pattern Recogn 34(3):601–615

    Article  MATH  Google Scholar 

  29. Lee JH, Yang SH (2001) Fault diagnosis and recovery for a CNC machine tool thermal error compensation system. J Manuf Syst 19(6):428–434

    Article  Google Scholar 

  30. Donmez A (1986) A general methodology for machine tool accuracy enhancement by error compensation. Precis Eng 8(4):187–196

    Article  Google Scholar 

  31. Anjanappa M, Anand DK, Kirk JA (1988) Error correction methodologies and control strategies for numerical control machines. Control Method Manuf Process 7:41–49

    Google Scholar 

  32. Islam S, Liu PX (2011) Robust adaptive fuzzy output feedback control system for robot manipulators. IEEE/ASME Trans Mechatronics 16(2):288–296

    Article  Google Scholar 

  33. Chen YF, Zhu DM, Zhu GB, Wang HZ (2008) The application of an improved PID control in servo control. Servo Control 1:53–55

    Google Scholar 

  34. Zhou Y, Chen JH, Peng FY (2007) Mechatronic integrated system simulation for a high-speed and high-precision CNC feed drive. Mech Sci Technol 26(2):135–139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Q. Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, C., Xie, S.Q., Wu, J. et al. Position error compensation of semi-closed loop servo system using support vector regression and fuzzy PID control. Int J Adv Manuf Technol 71, 887–898 (2014). https://doi.org/10.1007/s00170-013-5495-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5495-7

Keywords

Navigation