A turnpike approach to solving the linear bottleneck assignment problem



The linear bottleneck assignment problem (LBAP), which is a variation of the classical assignment problem (CAP), seeks to minimize the longest completion time rather than the sum of the completion times when a number of jobs are to be assigned to the same number of workers. Several procedures have been proposed in the current literature to convert the LBAP into an equivalent CAP and then apply the Hungarian method to solve it efficiently. However, their applicability is limited because some of the elements in the transformed assignment matrix for the CAP can be too large to be handled by most computer programs. In this paper, we suggest a turnpike approach to alleviate the problem so that the conversion methodology will become more useful in practice. A numerical example is provided to demonstrate the superiority of the new algorithm to the existing ones.


Assignment problem Hungarian method Linear bottleneck assignment problem Turnpike algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aneja YP, Punnen AP (1999) Multiple bottleneck assignment problem. Eur J Oper Res 112(1):167–173CrossRefMATHGoogle Scholar
  2. 2.
    Armstrong RD, Jin J (1992) Solving linear bottleneck assignment problems via strong spanning trees. Oper Res Lett 12(3):179–180CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bhatia HL (1977) Time minimizing assignment problem. Systems and Cybernetics in Management 6(3):75–83MATHGoogle Scholar
  4. 4.
    Burkard RE, Çela E (1999) Linear assignment problems and extensions. In: Du D-Z, Pardalos PM (eds) Handbook of combinatorial optimization: supplement volume A. Kluwer, Dordrecht, pp 75–149CrossRefGoogle Scholar
  5. 5.
    Burkard RE, Dell’Amico M, Martello S (2009) Assignment problems: revised reprint. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar
  6. 6.
    Burkard RE, Rendl F (1991) Lexicographic bottleneck problems. Oper Res Lett 10(5):303–308CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Burkard RE, Rissner R (2011) Polynomially solvable special cases of the quadratic bottleneck assignment problem. J Comb Optim 22(4):845–856CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Burkard RE, Zimmermann U (1977) Weakly admissible transformations. Report No. 77-3, Köln, Germany: Mathematisches Institut, Universität zu KölnGoogle Scholar
  9. 9.
    Carpaneto G, Martello S, Toth P (1984) An algorithm for the bottleneck traveling salesman problem. Oper Res 32(2):380–389CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Carpaneto G, Toth P (1981) Algorithm for the solution of the bottleneck assignment problem. Computing 27(2):179–187CrossRefMATHGoogle Scholar
  11. 11.
    Carraresi P, Gallo G (1984) A multi-level bottleneck assignment approach to the bus drivers’ rostering problem. Eur J Oper Res 16(2):163–173CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    De P, Ghosh JB, Wells CE (1992) On the solution of a stochastic bottleneck assignment problem and its variations. Nav Res Logist 39(3):389–397CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Derigs U (1984) Alternate strategies for solving bottleneck assignment problems—analysis and computational results. Computing 33(2):95–106CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Derigs U, Zimmermann U (1978) An augmenting path method for solving linear bottleneck assignment problems. Computing 19(4):285–295CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Dokka T, Kouvela A, Spieksma FCR (2012) Approximating the multi-level bottleneck assignment problem. Oper Res Lett 40(4):282–286CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Edmonds J, Fulkerson DR (1970) Bottleneck extrema. Journal of Combinatorial Theory 8(3):299–306CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Ford LR Jr, Fulkerson DR (1962) Flows in networks. Princeton University Press, PrincetonMATHGoogle Scholar
  18. 18.
    Fulkerson, DR, Glicksberg, I, Gross, O (1953). A production line assignment problem. Research Memorandum RM-1102, Santa Monica, CA: Rand CorporationGoogle Scholar
  19. 19.
    Garfinkel RS (1971) An improved algorithm for the bottleneck assignment problem. Oper Res 19(7):1747–1751CrossRefMATHGoogle Scholar
  20. 20.
    Garfinkel RS, Gilbert KC (1978) The bottleneck traveling salesman problem: algorithms and probabilistic analysis. J Assoc Comput Mach 25(3):435–448CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Garfinkel RS, Nemhauser GL (1970) Optimal political districting by implicit enumeration techniques. Manag Sci 16(8):495–508CrossRefGoogle Scholar
  22. 22.
    Gross, O (1959). The bottleneck assignment problem. Paper P-1630, Santa Monica, CA: Rand CorporationGoogle Scholar
  23. 23.
    Hammer PL (1969) Time-minimizing transportation problems. Naval Research Logistics Quarterly 16:345–357CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2(1–2):83–97CrossRefMathSciNetGoogle Scholar
  25. 25.
    Kuo C-C (2011) Optimal assignment of resources to strengthen the weakest link in an uncertain environment. Ann Oper Res 186(1):159–173CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Malhotra R, Bhatia HL, Puri MC (1985) The three dimensional bottleneck assignment problem and its variants. Optimization 16(2):245–256CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Mazzola JB, Neebe AW (1988) Bottleneck generalized assignment problems. Engineering Costs & Production Economics 14(1):61–65CrossRefGoogle Scholar
  28. 28.
    Page ES (1963) A note on assignment problems. Comput J 6(3):241–243CrossRefMATHGoogle Scholar
  29. 29.
    Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization: algorithms and complexity. Prentice-Hall, Englewood CliffsMATHGoogle Scholar
  30. 30.
    Pentico DW (2007) Assignment problems: a golden anniversary survey. Eur J Oper Res 176(2):774–793CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Ravindran A, Ramaswami V (1977) On the bottleneck assignment problem. J Optim Theory Appl 21(4):451–458CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Sokkalingam PT, Aneja YP (1998) Lexicographic bottleneck combinatorial problems. Oper Res Lett 23(1–2):27–33CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Srinivasan V, Thompson GL (1976) Algorithms for minimizing total cost, bottleneck time and bottleneck shipment in transportation problems. Naval Research Logistics Quarterly 23(4):567–595CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Szwarc W (1971) Some remarks on the time transportation problem. Nav Res Logist 18(4):473–485CrossRefMathSciNetGoogle Scholar
  35. 35.
    Trivedi KS (2002) Probability and statistics with reliability, queuing and computer science applications, 2nd edn. Wiley, New YorkGoogle Scholar
  36. 36.
    Weiss HJ, Gershon ME (1993) Production and operations management, 2nd edn. Allyn and Bacon, Needham HeightsGoogle Scholar
  37. 37.
    Yechiali U (1968) A stochastic bottleneck assignment. Manag Sci 14(11):732–734CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Management, College of BusinessUniversity of North TexasDentonUSA
  2. 2.Department of Industrial & Systems Engineering & Engineering Management, College of EngineeringThe University of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations