Skip to main content
Log in

A turnpike approach to solving the linear bottleneck assignment problem

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The linear bottleneck assignment problem (LBAP), which is a variation of the classical assignment problem (CAP), seeks to minimize the longest completion time rather than the sum of the completion times when a number of jobs are to be assigned to the same number of workers. Several procedures have been proposed in the current literature to convert the LBAP into an equivalent CAP and then apply the Hungarian method to solve it efficiently. However, their applicability is limited because some of the elements in the transformed assignment matrix for the CAP can be too large to be handled by most computer programs. In this paper, we suggest a turnpike approach to alleviate the problem so that the conversion methodology will become more useful in practice. A numerical example is provided to demonstrate the superiority of the new algorithm to the existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aneja YP, Punnen AP (1999) Multiple bottleneck assignment problem. Eur J Oper Res 112(1):167–173

    Article  MATH  Google Scholar 

  2. Armstrong RD, Jin J (1992) Solving linear bottleneck assignment problems via strong spanning trees. Oper Res Lett 12(3):179–180

    Article  MATH  MathSciNet  Google Scholar 

  3. Bhatia HL (1977) Time minimizing assignment problem. Systems and Cybernetics in Management 6(3):75–83

    MATH  Google Scholar 

  4. Burkard RE, Çela E (1999) Linear assignment problems and extensions. In: Du D-Z, Pardalos PM (eds) Handbook of combinatorial optimization: supplement volume A. Kluwer, Dordrecht, pp 75–149

    Chapter  Google Scholar 

  5. Burkard RE, Dell’Amico M, Martello S (2009) Assignment problems: revised reprint. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  6. Burkard RE, Rendl F (1991) Lexicographic bottleneck problems. Oper Res Lett 10(5):303–308

    Article  MATH  MathSciNet  Google Scholar 

  7. Burkard RE, Rissner R (2011) Polynomially solvable special cases of the quadratic bottleneck assignment problem. J Comb Optim 22(4):845–856

    Article  MATH  MathSciNet  Google Scholar 

  8. Burkard RE, Zimmermann U (1977) Weakly admissible transformations. Report No. 77-3, Köln, Germany: Mathematisches Institut, Universität zu Köln

  9. Carpaneto G, Martello S, Toth P (1984) An algorithm for the bottleneck traveling salesman problem. Oper Res 32(2):380–389

    Article  MATH  MathSciNet  Google Scholar 

  10. Carpaneto G, Toth P (1981) Algorithm for the solution of the bottleneck assignment problem. Computing 27(2):179–187

    Article  MATH  Google Scholar 

  11. Carraresi P, Gallo G (1984) A multi-level bottleneck assignment approach to the bus drivers’ rostering problem. Eur J Oper Res 16(2):163–173

    Article  MATH  MathSciNet  Google Scholar 

  12. De P, Ghosh JB, Wells CE (1992) On the solution of a stochastic bottleneck assignment problem and its variations. Nav Res Logist 39(3):389–397

    Article  MATH  MathSciNet  Google Scholar 

  13. Derigs U (1984) Alternate strategies for solving bottleneck assignment problems—analysis and computational results. Computing 33(2):95–106

    Article  MATH  MathSciNet  Google Scholar 

  14. Derigs U, Zimmermann U (1978) An augmenting path method for solving linear bottleneck assignment problems. Computing 19(4):285–295

    Article  MATH  MathSciNet  Google Scholar 

  15. Dokka T, Kouvela A, Spieksma FCR (2012) Approximating the multi-level bottleneck assignment problem. Oper Res Lett 40(4):282–286

    Article  MATH  MathSciNet  Google Scholar 

  16. Edmonds J, Fulkerson DR (1970) Bottleneck extrema. Journal of Combinatorial Theory 8(3):299–306

    Article  MATH  MathSciNet  Google Scholar 

  17. Ford LR Jr, Fulkerson DR (1962) Flows in networks. Princeton University Press, Princeton

    MATH  Google Scholar 

  18. Fulkerson, DR, Glicksberg, I, Gross, O (1953). A production line assignment problem. Research Memorandum RM-1102, Santa Monica, CA: Rand Corporation

  19. Garfinkel RS (1971) An improved algorithm for the bottleneck assignment problem. Oper Res 19(7):1747–1751

    Article  MATH  Google Scholar 

  20. Garfinkel RS, Gilbert KC (1978) The bottleneck traveling salesman problem: algorithms and probabilistic analysis. J Assoc Comput Mach 25(3):435–448

    Article  MATH  MathSciNet  Google Scholar 

  21. Garfinkel RS, Nemhauser GL (1970) Optimal political districting by implicit enumeration techniques. Manag Sci 16(8):495–508

    Article  Google Scholar 

  22. Gross, O (1959). The bottleneck assignment problem. Paper P-1630, Santa Monica, CA: Rand Corporation

  23. Hammer PL (1969) Time-minimizing transportation problems. Naval Research Logistics Quarterly 16:345–357

    Article  MATH  MathSciNet  Google Scholar 

  24. Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2(1–2):83–97

    Article  MathSciNet  Google Scholar 

  25. Kuo C-C (2011) Optimal assignment of resources to strengthen the weakest link in an uncertain environment. Ann Oper Res 186(1):159–173

    Article  MATH  MathSciNet  Google Scholar 

  26. Malhotra R, Bhatia HL, Puri MC (1985) The three dimensional bottleneck assignment problem and its variants. Optimization 16(2):245–256

    Article  MATH  MathSciNet  Google Scholar 

  27. Mazzola JB, Neebe AW (1988) Bottleneck generalized assignment problems. Engineering Costs & Production Economics 14(1):61–65

    Article  Google Scholar 

  28. Page ES (1963) A note on assignment problems. Comput J 6(3):241–243

    Article  MATH  Google Scholar 

  29. Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization: algorithms and complexity. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  30. Pentico DW (2007) Assignment problems: a golden anniversary survey. Eur J Oper Res 176(2):774–793

    Article  MATH  MathSciNet  Google Scholar 

  31. Ravindran A, Ramaswami V (1977) On the bottleneck assignment problem. J Optim Theory Appl 21(4):451–458

    Article  MATH  MathSciNet  Google Scholar 

  32. Sokkalingam PT, Aneja YP (1998) Lexicographic bottleneck combinatorial problems. Oper Res Lett 23(1–2):27–33

    Article  MATH  MathSciNet  Google Scholar 

  33. Srinivasan V, Thompson GL (1976) Algorithms for minimizing total cost, bottleneck time and bottleneck shipment in transportation problems. Naval Research Logistics Quarterly 23(4):567–595

    Article  MATH  MathSciNet  Google Scholar 

  34. Szwarc W (1971) Some remarks on the time transportation problem. Nav Res Logist 18(4):473–485

    Article  MathSciNet  Google Scholar 

  35. Trivedi KS (2002) Probability and statistics with reliability, queuing and computer science applications, 2nd edn. Wiley, New York

    Google Scholar 

  36. Weiss HJ, Gershon ME (1993) Production and operations management, 2nd edn. Allyn and Bacon, Needham Heights

    Google Scholar 

  37. Yechiali U (1968) A stochastic bottleneck assignment. Manag Sci 14(11):732–734

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Chung Kuo.

Appendix 1: Proofs of Propositions

Appendix 1: Proofs of Propositions

1.1 Proof of Proposition 1

Suppose that x * = (x 11 *, x 12 *, …, x nn *) is an optimal solution to (M2). Let S = {(i, j): x ij * = 1, 1 ≤ i, j ≤ n}. Since c ij  ≥ r i ∀ (i, j) ∈ S, Z * = max {c ij : (i, j) ∈ S} ≥ max {r i : (i, j) ∈ S} = max {r i : 1 ≤ i ≤ n} = r or Z * ≥ r. Similarly, c ij  ≥ c j ∀ (i, j) ∈ S and Z * = max {c ij : (i, j) ∈ S} ≥ max {c j : (i, j) ∈ S} = max {c j : 1 ≤ j ≤ n} = c or Z * ≥ c. It follows that Z * ≥ max {r, c} = LB or Z * ≥ LB, which implies that Z * is bounded below by LB.

1.2 Proof of Proposition 4

Call all the elements in [c ij ] greater than c(n 2 − n + 1) inadmissible and replace each of them with an extremely large positive number M. Rank the matrix columns in non-decreasing order of number of admissible elements and label them as [1], [2], …, [n]. Since there are only n − 1 inadmissible elements in [c ij ], column [j] contains at least j admissible elements, 1 ≤ j ≤ n. Beginning with column [1], match the job with the worker associated with any admissible element in the column and cross out the corresponding row and column. Repeat the same procedure on the continuously reduced matrix until the matching in column [n] is made.

Suppose the job-worker assignments determined in this way are represented by w = (w 11, w 12, …, w nn ), where w ij  ∈ {0, 1}, \( {\displaystyle \sum_{j=1}^n{w}_{ij}}=1,1\le i\le n \), and \( {\displaystyle \sum_{i=1}^n{w}_{ij}}=1,1\le j\le n \). It is trivial to see that w is a feasible solution to (M2). Furthermore, Z * ≤ Z = max {c ij : w ij  = 1, 1 ≤ i, j ≤ n} ≤ c(n 2 − n + 1) = w or Z * ≤ w, which implies that Z * is bounded above by w.

1.3 Proof of Proposition 7

Assume that x * = (x 11 *, x 12 *, …, x nn *) is an optimal solution to the CAP with [f ij ]. To prove the proposition, it suffices to show that x * also solves the LBAP with [e ij ]. Suppose otherwise and y = (y 11, y 12, …, y nn ) is a better feasible solution to the LBAP; that is, \( \underset{1\le i,j\le n}{ \max } \) {e ij : y ij  = 1} < \( \underset{1\le i,j\le n}{ \max } \) {e ij : x ij * = 1}. Let t′ and t * be the unique positive integers such that \( \underset{1\le i,j\le n}{ \max } \) {e ij : y ij  = 1} = t′ ∈ S(t′) and \( \underset{1\le i,j\le n}{ \max } \) {e ij : x ij * = 1} = t *S(t *). Further, let σ′ and θ′ be associated with t′ while σ * and θ * be associated with t *. Given t′ < t *, we have f(t′) < f(t *) since f(.) is an increasing function. Also, note that θ *f(t′) + [θ′ − f(σ′)], which means that the sum of the largest n elements smaller than f(t *) in [f ij ] is greater than or equal to the sum of f(t′) and the largest n − 1 elements smaller than f(t′).

Based on the above discussion, we have \( \begin{array}{l}{\displaystyle \sum_{i=1}^n{\displaystyle \sum_{j=1}^n{f}_{ij}{x}_{ij}^{\ast }}}={\displaystyle \sum_{i=1}^n{\displaystyle \sum_{j=1}^n\left\{{f}_{ij}:{x}_{ij}^{\ast }=1\right\}}}=\underset{1\le i,j\le n}{ \max}\left\{{f}_{ij}:{x_{ij}}^{*}=1\right\}\ \hfill \\ {}+\left[{\displaystyle \sum_{i=1}^n{\displaystyle \sum_{j=1}^n\left\{{f}_{ij}:{x}_{ij}^{\ast }=1\right\}}}\kern.3em -\underset{1\le i,j\le n}{ \max}\left\{{f}_{ij}:{x_{ij}}^{*}=1\right\}\right]=f\left({t}^{*}\right)+\left[{\displaystyle \sum_{i=1}^n{\displaystyle \sum_{j=1}^n\left\{{f}_{ij}:{x}_{ij}^{\ast }=1\right\}}}\kern.3em -\underset{1\le i,j\le n}{ \max}\left\{{f}_{ij}:{x_{ij}}^{*}=1\right\}\right]\ge f\left({t}^{*}\right)+\beta \hfill \\ {}=\left({\theta}^{*}-\beta +1\right)+\beta ={\theta}^{*}+1>{\theta}^{*}\ge f\left(t\prime \right)+\left[\theta \prime -f\left(\sigma \prime \right)\right]=\underset{1\le i,j\le n}{ \max}\left\{{f}_{ij}:{y}_{ij}=1\right\}+\left[\theta \prime -f\left(\sigma \prime \right)\right]\ge \underset{1\le i,j\le n}{ \max}\left\{{f}_{ij}:{y}_{ij}=1\right\}\hfill \\ {}+\left[{\displaystyle \sum_{i=1}^n{\displaystyle \sum_{j=1}^n\left\{{f}_{ij}:{y}_{ij}=1\right\}}}\kern.3em -\underset{1\le i,j\le n}{ \max}\left\{{f}_{ij}:{y}_{ij}=1\right\}\right]={\displaystyle \sum_{i=1}^n\kern5pt {\displaystyle \sum_{j=1}^n\kern5pt \left\{{f}_{ij}:{y}_{ij}=1\right\}}={\displaystyle \sum_{i=1}^n\kern5pt {\displaystyle \sum_{j=1}^n{f}_{ij}{y}_{ij}}}}\hfill \end{array} \) or \( {\displaystyle \sum_{i=1}^n{\displaystyle \sum_{j=1}^n{f}_{ij}{x}_{ij}^{\ast }}}\ge {\displaystyle \sum_{i=1}^n{\displaystyle \sum_{j=1}^n{f}_{ij}{y}_{ij}}} \), which implies that y is a better solution to the CAP than x. Since this a contradiction to the assumption that x * is an optimal solution, the proof is complete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, CC., Nicholls, G. A turnpike approach to solving the linear bottleneck assignment problem. Int J Adv Manuf Technol 71, 1059–1068 (2014). https://doi.org/10.1007/s00170-013-5464-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5464-1

Keywords

Navigation