Skip to main content
Log in

In-process prediction of the hardened layer in cylindrical traverse grind-hardening

  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript


Grind-hardening is an innovative manufacturing process that takes advantage of the high amount of heat generated in the contact zone to produce a martensitic phase transformation in the subsurface layer of the workpiece. However, for a successful industrial implementation of the process, the closed loop control of the hardening depth is essential. Firstly, in this paper, cylindrical traverse grinding tests and metallographic analysis are conducted, and a grinding parameter that enables the in-process control of the hardness penetration depth (HPD) is proposed. Secondly, a nondestructive method based on the Barkhausen noise technique is presented as a quality control procedure for the HPD estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Brockhoff T (1999) Grind-hardening: a comprehensive view. Ann CIRP 48:255–260

    Article  Google Scholar 

  2. Brinksmeier E, Brockhoff T (1996) Utilization of grinding heat as a new heat treatment process. CIRP Ann Manuf Technol 45(1):283–286

    Article  Google Scholar 

  3. Kolkwitz B, Foeckerer T, Heinzel C, Zaeh MF, Brinksmeier E (2011) Experimental and numerical analysis of the surface integrity resulting from outer-diameter grind-hardening. Procedia Eng 19:222–227

    Article  Google Scholar 

  4. Zhang J, Ge P, Jen TC, Zhang L (2009) Experimental and numerical studies of AISI1020 steel in grind-hardening. Int J Heat Mass Transf 52(3–4):787–795

    Article  MATH  Google Scholar 

  5. Lima A, Baptista EA, Gâmbaro LS, Junior MV (2011) The use of cylindrical grinding to produce a martensitic structure on the surface of 4340 steel. J Braz Soc Mech Sci Eng 33(1):34–40

    Article  Google Scholar 

  6. Nguyen T, Zhang LC (2010) Realization of grinding-hardening in workpieces of curved surfaces—part 1: plunge cylindrical grinding. Int J Mach Tools Manuf 51(4):309–319

    Article  Google Scholar 

  7. Nguyen T, Zhang LC (2012) Prediction of the hardened layer in traverse cylindrical grinding-hardening. Mater Sci Forum 697–698:13–18

    Google Scholar 

  8. Salonitis K, Chondros T, Chryssolouris G (2008) Grinding wheel effect in the grind-hardening process. Int J Adv Manuf Technol 38(1/2):48–58

    Article  Google Scholar 

  9. Salonitis K, Tsoukantas G, Drakopoulos S, Stavropoulos P, Chryssolouris G (2006) Environmental Impact assessment of grind-hardening process. In: Proceedings of LCE, pp. 657–662

  10. Zäh MF, Brinksmeier E, Heinzel C, Huntemann JW, Föckerer T (2009) Experimental and numerical identification of process parameters of grind-hardening and resulting part distortions. Prod Eng 3(3):271–279

    Article  Google Scholar 

  11. Föckerer T, Zäh MF, Zhang OB (2013) A three-dimensional analytical model to predict the thermo-metallurgical effects within the surface layer during grinding and grind-hardening. Int J Heat Mass Transf 56:223–237

    Article  Google Scholar 

  12. Salonitis K, Chryssolouris G (2006) Cooling in grind-hardening operations. Int J Adv Manuf Technol 33(3/4):285–297

    Google Scholar 

  13. Venkatachalapathy VSK, Rajmohan B (2003) Experimental studies on the grind-hardening effect in cylindrical grinding. Mater Manuf Process 18(2):245–259

    Article  Google Scholar 

  14. Judong L, Wei Y, Songwei H, Zhilong X (2012) Experimental study on grinding-hardening of 1060 steel. Energy Procedia 16:103–108

    Article  Google Scholar 

  15. Titto S, Otala M (1976) Non-destructive magnetic measurement of steel grain size. NDT & E Int 9:117–120

    Article  Google Scholar 

  16. Anglada-Rivera J, Padovese L, Capó-Sánchez J (2001) Magnetic Barkhausen noise and hysteresis loop in commercial carbon steel: influence of applied tensile stress and grain size. J Magn Magn Mater 231(2–3):299–306

    Article  Google Scholar 

  17. Moorthy V, Shaw BA, Evans JT (2003) Evaluation of tempering induced changes in the hardness profile of case-carburised EN36 steel using magnetic Barkhausen noise analysis. Nondestruct Test Eval 36:43–49

    Google Scholar 

  18. Bach G, Goebbels K, Theiner WA (1988) Characterization of hardening depth by Barkhausen noise measurement. Mater Eval 46:1576–1580

    Google Scholar 

  19. Vaidyanathan S, Moorthy V, Jayakumar T, Raj B (2000) Evaluation of induction hardened case depth through microstructural characterization using magnetic Barkhausen emission technique. Mater Sci Technol 16:202–208

    Article  Google Scholar 

  20. Moorthy V, Shaw BA, Brimble K (2004) Testing of case depth in case carburized steels using magnetic Barkhausen emission technique. Mater Eval 62(5):523–527

    Google Scholar 

  21. Blaow M, Evans J, Shaw B (2004) Effect of deformation in bending on magnetic Barkhausen noise in low alloy steel. Mater Sci Eng: A 386(1–2):74–80

    Article  Google Scholar 

  22. Malkin S, Lenz E (1978) Burning limit for surface and cylindrical grinding of steels. CIRP Ann 27(1):233–236

    Google Scholar 

  23. Stephenson DJ, Corbett J, Laine E, Johnstone I, Baldwin A (2001) Burn threshold studies for superabrasive grinding using electroplated CBN wheels. In: SME 4th international machining and grinding conference

  24. Mayer JE, Price AH, Purushothaman GK, Dhayalan AK (2002) Thermal damage in helicopter gear steel. J Manuf Process 4(2):142–147

    Article  Google Scholar 

  25. Kruszynski BW, Wójcik R (2001) Residual stress in grinding. J Mater Process Technol 109:254–257

    Article  Google Scholar 

  26. Zeppenfeld C (2005) Schnellhubschleifen von g-Titanaluminide. Dissertation, RWTH Aachen University

  27. Tönissen S, Klocke F, Feldhaus B, Buchholz S, Weiß M (2012) Residual stress prediction in quick point grinding. Prod Eng 6(3):243–249

    Article  Google Scholar 

  28. ASM International (1991) ASM handbook. Heat treating, vol 4. ASM International, Geauga County

    Google Scholar 

  29. Pombo I, Sanchez JA, Ortega N, Marquinez JI, Izquierdo B, Plaza S (2012) Contact length estimation in grinding using thermocouple measurement and numerical simulation. Int J Adv Manuf Technol 59:83–91

    Article  Google Scholar 

  30. Nummilia K, Seppa H, Varpula T (2005) Method and system for determining hardness penetration in steel. United States Patent Aplication Publication, US2005/0242803A1

  31. Santa-aho S, Vippola M, Sorsa A, Leiviska K, Lindgren M, Lepistö T (2012) Utilization of Barkhausen noise magnetizing sweeps for case-depth detection from hardened steel. NDT & E Int 52:95–102

    Article  Google Scholar 

  32. Chikazumi S (1964) Physics of magnetism. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Unai Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, U., Ortega, N., Sanchez, J.A. et al. In-process prediction of the hardened layer in cylindrical traverse grind-hardening. Int J Adv Manuf Technol 71, 101–108 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: