Skip to main content
Log in

Investigation on the effects of ultrasonic vibration on material removal rate and surface roughness in wire electrical discharge turning

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

An investigation has been made to combine ultrasonic vibration and wire electrical discharge turning. Design of a submerged, precise, flexible, and corrosion-resistant rotary spindle is introduced. The spindle was mounted on a five-axis wire electrical discharge machine to rotate the workpiece in order to generate free-form cylindrical geometries. An auxiliary device that produces ultrasonic vibration was installed between the two wire guides. The ultrasonic system consists of an ultrasonic generator, a transducer, and a wire holder. When the wire is being driven, the transducer together with the wire holder vibrates under the resonance condition. Material removal rate (MRR) indicates efficiency and cost-effectiveness of the process. Experimental results show that wire vibration induced by ultrasonic action has a significant effect on material removal rate. This study has been conducted to evaluate the influence of four design factors: power, pulse off time, spindle rotational speed, and ultrasonic vibration over material removal rate. This has been done by means of design of experiments technique. Analysis of variance was used to determine significant effective factors and also to obtain an equation based on data regression. Experimental results indicate that ultrasonic vibration and power are the most significant influencing parameters on MRR. Rotational speed and pulse off time are the next in ranking. In order to study surface roughness, R a is measured in different machining parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masuzawa T, Fujino M, Kobayashi K, Suzuki T, Kinoshita N (1985) Wire electro-discharge grinding for micro-machining. CIRP Ann Manuf Technol 34(1):431–434. doi:10.1016/s0007-8506(07)61805-8

    Article  Google Scholar 

  2. Kuo C-L, Huang J-D (2004) Fabrication of series-pattern micro-disk electrode and its application in machining micro-slit of less than 10 μm. Int J Mach Tools Manuf 44(5):545–553. doi:10.1016/j.ijmachtools.2003.10.021

    Article  Google Scholar 

  3. Lim HS, Wong YS, Rahman M, Edwin Lee MK (2003) A study on the machining of high-aspect ratio micro-structures using micro-EDM. J Mater Process Technol 140(1–3):318–325. doi:10.1016/s0924-0136(03)00760-x

    Article  Google Scholar 

  4. Qu J, Shih AJ, Scattergood RO (2002) Development of the cylindrical wire electrical discharge machining process, part 1: concept, design, and material removal rate. J Manuf Sci Eng 124(3):702–707

    Article  Google Scholar 

  5. Rhoney BK, Shih AJ, Scattergood RO, Akemon JL, Gust DJ, Grant MB (2002) Wire electrical discharge machining of metal bond diamond wheels for ceramic grinding. Int J Mach Tools Manuf 42(12):1355–1362

    Article  Google Scholar 

  6. Haddad MJ, Tajik M, Fadaei Tehrani A, Mohammadi A, Hadi M (2009) An experimental investigation of cylindrical wire electrical discharge turning process using Taguchi approach. Int J Mater Form 2(3):167–179. doi:10.1007/s12289-009-0401-4

    Article  Google Scholar 

  7. Weingärtner E, Jaumann S, Kuster F, Boccadoro M (2010) Special wire guide for on-machine wire electrical discharge dressing of metal bonded grinding wheels. CIRP Ann Manuf Technol 59(1):227–230. doi:10.1016/j.cirp.2010.03.010

    Article  Google Scholar 

  8. Kremer D, Lebrun JL, Hosari B, Moisan A (1989) Effects of ultrasonic vibrations on the performances in EDM. CIRP Ann Manuf Technol 38(1):199–202. doi:10.1016/s0007-8506(07)62684-5

    Article  Google Scholar 

  9. Kremer D, Lhiaubet C, Moisan A (1991) A study of the effect of synchronizing ultrasonic vibrations with pulses in EDM. CIRP Ann Manuf Technol 40(1):211–214. doi:10.1016/s0007-8506(07)61970-2

    Article  Google Scholar 

  10. Ghoreishi M, Atkinson J (2002) A comparative experimental study of machining characteristics in vibratory, rotary and vibro-rotary electro-discharge machining. J Mater Process Technol 120(1–3):374–384. doi:10.1016/s0924-0136(01)01160-8

    Article  Google Scholar 

  11. Abdullah A, Shabgard M (2008) Effect of ultrasonic vibration of tool on electrical discharge machining of cemented tungsten carbide (WC-Co). Int J Adv Manuf Technol 38(11):1137–1147. doi:10.1007/s00170-007-1168-8

    Article  Google Scholar 

  12. Guo ZN, Lee TC, Yue TM, Lau WS (1997) A study of ultrasonic-aided wire electrical discharge machining. J Mater Process Technol 63(1–3):823–828. doi:10.1016/s0924-0136(96)02732-x

    Article  Google Scholar 

  13. Zhang JH, Lee TC, Lau WS, Ai X (1997) Spark erosion with ultrasonic frequency. J Mater Process Technol 68(1):83–88. doi:10.1016/s0924-0136(96)02545-9

    Article  Google Scholar 

  14. Mohammadi A, Tehrani AF, Emanian E, Karimi D (2008) Statistical analysis of wire electrical discharge turning on material removal rate. J Mater Process Technol 205(1–3):283–289. doi:10.1016/j.jmatprotec.2007.11.177

    Article  Google Scholar 

  15. Montgomery DC (2001) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  16. Tamhane AC (2009) Statistical Analysis of Designed Experiments: theory and applications. Wiley, New York

    Book  Google Scholar 

  17. Storck H, Littmann W, Wallaschek J, Mracek M (2002) The effect of friction reduction in presence of ultrasonic vibrations and its relevance to travelling wave ultrasonic motors. Ultrasonics 40(1–8):379–383. doi:10.1016/S0041-624X(02)00126-9

    Article  Google Scholar 

  18. Kumar VC, Hutchings IM (2004) Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration. Tribol Int 37(10)):833–840. doi:10.1016/j.triboint.2004.05.003

    Article  Google Scholar 

  19. Gutowski P, Leus M (2012) The effect of longitudinal tangential vibrations on friction and driving forces in sliding motion. Tribol Int 55:108–118. doi:10.1016/j.triboint.2012.05.023

    Article  Google Scholar 

  20. Young FR (1999) Cavitation. Imperial College Press, London

    Book  Google Scholar 

  21. Murthy VSR, Philip PK (1987) Pulse train analysis in ultrasonic assisted EDM. Int J Mach Tools Manuf 27(4):469–477. doi:10.1016/S0890-6955(87)80019-6

    Article  Google Scholar 

  22. Liang Z, Zhou G, Lin S, Zhang Y, Yang H (2006) Study of low-frequency ultrasonic cavitation fields based on spectral analysis technique. Ultrasonic 44:115–120

    Article  Google Scholar 

  23. Yu JW, Dabrowski L, Yin S, Lechniak Z (2011) Productivity of EDM process assisted by ultrasonic waves. Solid State Phenom 175:157–160

    Article  Google Scholar 

  24. Srivastava V, Pandey PM (2012) Effect of process parameters on the performance of EDM process with ultrasonic assisted cryogenically cooled electrode. J Manuf Process 14(3):393–402. doi:10.1016/j.jmapro.2012.05.001

    Article  Google Scholar 

  25. Janardhan V, Samuel GL (2010) Pulse train data analysis to investigate the effect of machining parameters on the performance of wire electro discharge turning (WEDT) process. Int J Mach Tools Manuf 50(9):775–788. doi:10.1016/j.ijmachtools.2010.05.008

    Article  Google Scholar 

  26. Abdullah A, Shabgard M, Ivanov A, Shervanyi-Tabar M (2009) Effect of ultrasonic-assisted EDM on the surface integrity of cemented tungsten carbide (WC-Co). Int J Adv Manuf Technol 41(3):268–280. doi:10.1007/s00170-008-1476-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aminollah Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadi, A., Tehrani, A.F. & Abdullah, A. Investigation on the effects of ultrasonic vibration on material removal rate and surface roughness in wire electrical discharge turning. Int J Adv Manuf Technol 70, 1235–1246 (2014). https://doi.org/10.1007/s00170-013-5381-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5381-3

Keywords

Navigation