Skip to main content
Log in

Investigation of vehicle crash modeling techniques: theory and application

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Creating a mathematical model of a vehicle crash is a task which involves considerations and analysis of different areas which need to be addressed because of the mathematical complexity of a crash event representation. Therefore, to simplify the analysis and enhance the modeling process, in this work, a brief overview of different vehicle crash modeling methodologies is proposed. The acceleration of a colliding vehicle is measured in its center of gravity—this crash pulse contains detailed information about vehicle behavior throughout a collision. A virtual model of a collision scenario is established in order to provide an additional data set further used to evaluate a suggested approach. Three different approaches are discussed here: lumped parameter modeling of viscoelastic systems, data-based approach taking advantage of neural networks and autoregressive models and wavelet-based method of signal reconstruction. The comparative analysis between each method’s outcomes is performed and reliability of the proposed methodologies and tools is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eskandarian A, Marzougui D, Bedewi NE (1997) Finite element model and validation of a surrogate crash test vehicle for impacts with roadside objects. Technical report, National Crash Analysis Center, Virginia, USA

  2. Tenga TL, Chang FA, Liu YS, Peng CP (2008) Analysis of dynamic response of vehicle occupant in frontal crash using multibody dynamics method. Math Comput Model 48(11–12):1724–1736

    Article  Google Scholar 

  3. Kim HS, Kang SY, Lee IH, Park SH, Han DC (1996) Vehicle frontal crashworthiness analysis by simplified structure modeling using nonlinear spring and beam elements. Int J Crashworthiness 2(1):107–118

    Article  Google Scholar 

  4. Niu Y, Shen W, Stuhmiller JH (2007) Finite element models of rib as an inhomogeneous beam structure under high-speed 11 impacts. Med Eng Phys 29(7):788–798

    Article  Google Scholar 

  5. Moumni Z, Axisa F (2004) Simplified modelling of vehicle frontal crashworthiness using a modal approach. Int J Crashworthiness 9(3):285–297

    Article  Google Scholar 

  6. Borovinsek M, Vesenjak M, Ulbin M, Ren Z (2007) Simulation of crash tests for high containment levels of road safety barriers. Eng Fail Anal 14(8):1711–1718

    Article  Google Scholar 

  7. Soto CA (2004) Structural topology optimization for crashworthiness. Int J Crashworthiness 9(3):277–284

    Article  Google Scholar 

  8. Belytschko T (1992) On computational methods for crashworthiness. Comput Struct 42(2):271–279

    Article  MathSciNet  Google Scholar 

  9. Deb A, Srinivas KC (2008) Development of a new lumped parameter model for vehicle side-impact safety simulation. In: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 222, pp.1793–1811

  10. Jonsén P, Isaksson E, Sundin KG, Oldenburg M (2009) Identification of lumped parameter automotive crash models for bumper system development. Int J Crashworthiness 14(6):533–541

    Article  Google Scholar 

  11. Šušteršić G, Grabec I, Prebil I (2007) Statistical model of a vehicle-to-barrier collision. Int J Impact Eng 34(10):1585–1593

    Article  Google Scholar 

  12. Elmarakbi AM, Zu JW (2006) Crash analysis and modeling of two vehicles in frontal collisions using two types of smart front-end structures: an analytical approach using IHBM. Int J Crashworthiness 11(5):467–483

    Article  Google Scholar 

  13. Pawlus W, Karimi HR, Robbersmyr KG (2011) Mathematical modeling of a vehicle crash test based on elasto-plastic unloading scenarios of spring–mass models. Int J Adv Manuf Technol 55:369–378

    Article  Google Scholar 

  14. Pawlus W, Karimi HR, Robbersmyr KG (2011) Development of lumped-parameter mathematical models for a vehicle localized impact. J Mech Sci Technol 25(7):1737–1747

    Article  Google Scholar 

  15. Pawlus W, Karimi HR, Robbersmyr KG (2011) Effects of different spring–mass model elasto-plastic unloading scenarios on the vehicle crash model fidelity. ICIC Expr Lett Part B Appl 2(4):757–764

    Google Scholar 

  16. Pawlus W, Karimi HR, Robbersmyr KG (2011) Application of viscoelastic hybrid models to vehicle crash simulation. Int J Crashworthiness 16(2):195–205

    Article  Google Scholar 

  17. Pawlus W, Robbersmyr KG, Karimi HR (2011) Mathematical modeling and parameters estimation of a car crash using data-based regressive model approach. Appl Math Model 35:5091–5107

    Article  Google Scholar 

  18. Ma J, Kockelman KM, Damien P (2008) A multvariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods. Accid Anal Prev 40(3):964–975

    Article  Google Scholar 

  19. Pawlus W, Karimi HR, Robbersmyr KG (2012) Data-based modeling of vehicle collisions by nonlinear autoregressive model and feedforward neural network. Inf Sci. doi:10.1016/j.ins.2012.03.013, ISSN: 0020-0255

    MATH  Google Scholar 

  20. Connor JT, Martin RD, Atlas LE (1994) Recurrent neural networks and robust time series prediction. IEEE Trans Neural Netw 5(2):240–254

    Article  Google Scholar 

  21. Crucianu M, Uhry Z, Boné R, Asselin de Beauville J-P NAR time-series prediction: a Bayesian framework and an experiment. Proceedings of the European Symposium on Artificial Neural Networks (ESANN ‘98), Bruges, Belgium, April 1998

  22. Wang D, Lum K-Y, Yang G (2002) Parameter estimation of ARX/NARX model: a neural network based method. Proceedings of the 9th International Conference on Neural Information Processing (ICONIPOZ), Singapore

  23. Yang G, Lin Y, Bhattacharya P (2010) A driver fatigue recognition model based on information fusion and dynamic Bayesian network. Inf Sci 180(10):1942–1954

    Article  Google Scholar 

  24. Pham HT, Tran VT, Yang B-S (2010) A hybrid of nonlinear autoregressive model with exogenous input and autoregressive moving average model for long-term machine state forecasting. Expert Syst Appl 37(4):3310–3317

    Article  Google Scholar 

  25. Zvejnieks G, Kuzovkov VN, Dumbrajs O, Degeling AW, Suttrop W, Urano H, Zohm H (2004) Autoregressive moving average model for analyzing edge localized mode time series on Axially Symmetric Divertor Experiment (ASDEX) Upgrade tokamak. Phys Plasmas 11(12):5658–5667

    Article  Google Scholar 

  26. Basso M, Giarré L, Groppi S, Zappa G (2005) NARX models of an industrial power plant gas turbine. IEEE Trans Control Syst Technol 13(4):599–604

    Article  Google Scholar 

  27. Zemouri R, Gouriveau R, Zerhouni N (2010) Defining and applying prediction performance metrics on a recurrent NARX time series model. Neurocomputing 73(13–15):2506–2521

    Article  Google Scholar 

  28. Crone SF, Kourentzes N (2010) Feature selection for time series prediction—a combined filter and wrapper approach for neural networks. Neurocomputing 73(10–12):1923–1936

    Article  Google Scholar 

  29. Sheta AF, Jong KD (2001) Time-series forecasting using GA-tuned radial basis functions. Inf Sci 133(3–4):221–228

    Article  MATH  Google Scholar 

  30. Gandhi UN, Hu SJ (1995) Data-based approach in modeling automobile crash. Int J Impact Eng 16(1):95–118

    Article  Google Scholar 

  31. Bock J, Hettenhausen J (2012) Discrete particle swarm optimisation for ontology alignment. Inf Sci 192:152–173

    Article  Google Scholar 

  32. Karimi HR, Robbersmyr KG (2011) Signal analysis and performance evaluation of a vehicle crash test with a fixed safety barrier based on Haar wavelets. Int J Wavelets Multiresolution Image Process 9(1):131–149

    Article  MATH  Google Scholar 

  33. Karimi HR, Pawlus W, Robbersmyr KG (2012) Signal reconstruction, modeling and simulation of a vehicle full-scale crash test based on Morlet wavelets. Neurocomputing 93:88–99, ISSN: 0925-2312

    Article  Google Scholar 

  34. Gan M, Peng H, Peng X, Chen X, Garba I (2010) A locally linear RBF network-based state-dependent AR model for nonlinear time series modeling. Inf Sci 180(no.22):4370–4383

    Article  Google Scholar 

  35. Mitrakis NE, Theocharis JB (2012) A diversity-driven structure learning algorithm for building hierarchical neuro-fuzzy classifiers. Inf Sci 186(1):40–58

    Article  Google Scholar 

  36. McFadden J, Yang WT, Durrans RS (2001) Application of artificial neural networks to predict speeds on two-lane rural highways. Transp Res Rec 1751:9–17

    Article  Google Scholar 

  37. Abedelwahab H, Abdel-Aty MA (2001) Development of artificial neural networks models to predict driver injury severity in traffic accidents at signalized intersections. Transportation Research Board 80th annual meeting, Washington D.C., USA

  38. Várkonyi-Kóczy AR, Rövid A, Várlaki P Intelligent methods for car deformation modeling and crash speed estimation. The 1st Romanan–Hungarian Joint Symposium on Applied Computational Intelligence, Timisoara, Romania, May 2004

  39. Syrris V, Petridis V (2011) A lattice-based neuro-computing methodology for real-time human action recognition. Inf Sci 181(10):1874–1887

    Article  MathSciNet  Google Scholar 

  40. van der Laan E, Veldpaus F, de Jager B, Steinbuch M LPV modeling of vehicle occupants. 9th International Symposium on Advanced Vehicle Control (AVEC '08), Kobe, Japan, October 2008

  41. Zhang L, Shi P (2008) L 2L model reduction for switched LPV systems with average dwell time. IEEE Trans Autom Control 53(10):2443–2448

    Article  Google Scholar 

  42. Zhang L, Cui N, Liu M, Zhao Y (2011) Asynchronous filtering of discrete-time switched linear systems with average dwell time. IEEE Trans Circ Syst I Regular Pap 58(5):1109–1118

    Article  MathSciNet  Google Scholar 

  43. Zhao Y, Zhang L, Shen S, Gao H (2010) Robust stability criterion for discrete-time uncertain Markovian jumping neural networks with defective statistics of modes transition. IEEE Trans Neural Netw 22(1):164–170

    Article  Google Scholar 

  44. Cheng Z, Pilkey WD, Darvish K, Hollowell WT, Crandall JR (2001) Correlation analysis of automobile crash responses using wavelets. Proceedings of the International Modal Analysis Conference IMAC, Kissimmee, Florida, USA

  45. Cheng Z, Pellettiere JA, Rizer AL (2004) Wavelet-based validation methods and criteria for finite element automobile crashworthiness modeling. Proceedings of the 22nd IMAC Conference and Exposition (IMAC XXII): A Conference and Exposition on Structural Dynamics, Dearborn, MI, USA

  46. Kankar PK, Sharma SC, Harsha SP (2011) Rolling element bearing fault diagnosis using wavelet transform. Neurocomputing 74(10):1638–1645

    Article  Google Scholar 

  47. Hester D, Gonzalez A (2012) A wavelet-based damage detection algorithm based on bridge acceleration response to a vehicle. Mech Syst Signal Process 28:145–166

    Article  Google Scholar 

  48. Nguyen KV, Tran HT (2010) Multi-cracks detection of a beamlike structure based on the on-vehicle vibration signal and wavelet analysis. J Sound Vib 329(21):4455–4465

    Article  Google Scholar 

  49. Wanga YS, Leeb C-M, Kimb D-G, Xua Y (2007) Sound quality prediction for non-stationary vehicle interior noise based on wavelet pre-processing neural network model. J Sound Vib 299(4–5):933–947

    Article  Google Scholar 

  50. Chatterjee P, OBrien E, Li Y, Gonzalez A (2006) Wavelet domain analysis for identification of vehicle axles from bridge measurements. Comput Struct 84(28):1792–1801

    Article  Google Scholar 

  51. Sun T, Pei H, Pan Y, Zhang C (2011) Robust wavelet network control for a class of autonomous vehicles to track environmental contour line. Neurocomputing 74(17):2886–2892

    Article  Google Scholar 

  52. Qiao Y-L, Zhao C-H, Song C-Y (2009) Complex wavelet based texture classification. Neurocomputing 72(16–18):3957–3963

    Article  Google Scholar 

  53. Srinivasan D, Jin X, Cheu RL (2005) Adaptive neural network models for automatic incident detection on freeways. Neurocomputing 64:473–496

    Article  Google Scholar 

  54. Liu P (2009) A self-organizing feature maps and data mining based decision support system for liability authentications of traffic crashes. Neurocomputing 72(13–15):2902–2908

    Article  Google Scholar 

  55. Robbersmyr KG (2004) Calibration test of a standard Ford Fiesta 1.1l, model year 1987, according to NS-EN 12767. Technical Report 43/2004, Agder Research, Grimstad

  56. Huang M (2002) Vehicle crash mechanics. CRC Press, Boca Raton

    Book  Google Scholar 

  57. ISO 6487:2000. Road vehicles—measurement techniques in impact tests—instrumentation

  58. Chon KH, Cohen RJ (1997) Linear and nonlinear ARMA model parameter estimation using an artificial neural network. IEEE Trans Biomed Eng 44(3):168–174

    Article  Google Scholar 

  59. Vien NA, Yu H, Chung TC (2011) Hessian matrix distribution for Bayesian policy gradient reinforcement learning. Inf Sci 181(9):1671–1685

    Article  MATH  MathSciNet  Google Scholar 

  60. Nasoz F, Lisetti CL, Vasilakos AV (2010) Affectively intelligent and adaptive car interfaces. Inf Sci 180(20):3817–3836

    Article  Google Scholar 

  61. Guo ZX, Wong WK, Li M (2012) Sparsely connected neural network-based time series forecasting. Inf Sci 193:54–71

    Article  Google Scholar 

  62. Mendrok K (2010) Signal analysis and identification—lectures. AGH University of Science and Technology, Kraków

    Google Scholar 

  63. Grossman A, Morlet J (1984) Decomposition of Hardy functions into square integrable wavelets of constant shape SIAM. J Math Anal 15(4):723–736

    MathSciNet  Google Scholar 

  64. Burrus CS, Gopinath RA, Guo H (1998) Introduction to wavelets and wavelet transforms. Prentice Hall, Upper Saddle River

    Google Scholar 

  65. Scargle JD, Steiman-Cameron T, Young K, Donoho DL, Crutchfield JP, Imamura J (1993) The quasi-periodic oscillations and very low frequency noise of Scorpius X-1 as transient chaos—a dripping handrail? Astrophys J Part 2 Lett 411(no.2):91–94

    Article  Google Scholar 

  66. Misiti M, Misiti Y, Oppenheim G, Poggi J-M (2002) Wavelet Toolbox for use with MATLAB®—user’s guide, ver. 2. The MathWorks Inc

  67. Lin J, Qu L (2000) Feature extraction based on morlet wavelet and its application for mechanical fault diagnosis. J Sound Vib 234(1):135–148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Karimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawlus, W., Karimi, H.R. & Robbersmyr, K.G. Investigation of vehicle crash modeling techniques: theory and application. Int J Adv Manuf Technol 70, 965–993 (2014). https://doi.org/10.1007/s00170-013-5320-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5320-3

Keywords

Navigation