Application of an effective modified gravitational search algorithm for the coordinated scheduling problem in a two-stage supply chain

Abstract

This paper investigates a products and vehicles scheduling problem in a two-stage supply chain environment, where jobs first need to be processed on the serial batching machines of multiple manufacturers distributed in various geographic zones and then transported by vehicles to a customer for further processing. The size and processing time of jobs are varying with the difference of types, and each batch takes a setup time before being processed. The problem of minimizing the makespan is formalized as a mixed integer programming model and proved to be NP-hard. In addition, the structural properties and lower bound of the problem are analyzed and inferred. Then a modified gravitational search algorithm (MGSA) is proposed to solve the problem. In the developed MGSA, several improvement strategies and the batching mechanism DP-H are introduced. The effectiveness and efficiency of the proposed MGSA are demonstrated and compared with a particle swarm optimization (PSO) algorithm and a genetic algorithm (GA). Besides, the error ratios between the lower bound and the best found solutions are reported. The experimental results indicate that the proposed MGSA is more robust and outperforms PSO and GA on the studied two-stage supply chain scheduling problem.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Hall NG, Potts CN (2003) Supply chain scheduling: batching and delivery. Oper Res 51(4):566–584

    Article  MATH  MathSciNet  Google Scholar 

  2. 2.

    Dayou L, Pu Y, Ji Y (2009) Development of a multiobjective GA for advanced planning and scheduling problem. Int J Adv Manuf Technol 42(9–10):974–992

    Article  Google Scholar 

  3. 3.

    Delavar MR, Hajiaghaei-Keshteli M, Molla-Alizadeh-Zavardehi S (2010) Genetic algorithms for coordinated scheduling of production and air transportation. Expert Syst Appl 37(12):8255–8266

    Article  Google Scholar 

  4. 4.

    Yimer AD, Demirli K (2010) A genetic approach to two-phase optimization of dynamic supply chain scheduling. Comput Ind Eng 58(3):411–422

    Article  Google Scholar 

  5. 5.

    Liao C-J, Tsai Y-L, Chao C-W (2011) An ant colony optimization algorithm for setup coordination in a two-stage production system. Appl Soft Comput 11(8):4521–4529

    Article  Google Scholar 

  6. 6.

    Cakici E, Mason SJ, Kurz ME (2012) Multi-objective analysis of integrated an supply chain scheduling problem. Int J Prod Res 50(10):2624–2638

    Article  Google Scholar 

  7. 7.

    Amin-Naseri MR, Afshari AJ (2012) A hybrid genetic algorithm for integrated process planning and scheduling problem with precedence constraints. Int J Adv Manuf Technol 59(1–4):273–287

    Article  Google Scholar 

  8. 8.

    Hamidinia A, Khakabimamaghani S, Mazdeh MM, Jafari M (2012) A genetic algorithm for minimizing total tardiness/earliness of weighted jobs in a batched delivery system. Comput Ind Eng 62(1):29–38

    Article  Google Scholar 

  9. 9.

    Zegordi SH, Kamal Abadi IN, Beheshti Nia MA (2012) A novel genetic algorithm for solving production and transportation scheduling in a two-stage supply chain. Comput Ind Eng 58(3):373–381

    Article  Google Scholar 

  10. 10.

    Chandra P (1993) A dynamic distribution model with warehouse and customer replenishment requirements. J Oper Res Soc 44(7):681–692

    MATH  Google Scholar 

  11. 11.

    Chi-Shiang S, Panb JC-H, Hsua T-S (2009) A new heuristic algorithm for the machine scheduling problem with job delivery coordination. Theor Comput Sci 410(27–29):2581–2591

    MATH  Google Scholar 

  12. 12.

    Cheng TCE, Wang X (2010) Machine scheduling with job class setup and delivery considerations. Comput Oper Res 37(6):1123–1128

    Article  MATH  MathSciNet  Google Scholar 

  13. 13.

    Pardalos PM, Shylo OV, Vazacopoulos A (2010) Solving job shop scheduling problems utilizing the properties of backbone and "big valley". Comput Optim Appl 47(1):61–76

    Article  MATH  MathSciNet  Google Scholar 

  14. 14.

    Steinruecke M (2011) An approach to integrate production-transportation planning and scheduling in an aluminium supply chain network. Int J Prod Res 49(21):6559–6583

    Article  Google Scholar 

  15. 15.

    Mehravaran Y, Logendran R (2012) Non-permutation flowshop scheduling in a supply chain with sequence-dependent setup times. Int J Prod Econ 135(2):953–963

    Article  Google Scholar 

  16. 16.

    Aldowaisan TA, Ali A (2012) No-wait flowshop scheduling problem to minimize the number of tardy jobs. Int J Adv Manuf Technol 61(1–4):311–323

    Article  Google Scholar 

  17. 17.

    You P-S, Hsieh Y-C (2012) A heuristic approach to a single stage assembly problem with transportation allocation. Appl Math Comput 218(22):11100–11111

    Article  MATH  MathSciNet  Google Scholar 

  18. 18.

    Lee C-H, Liao C-J, Chao C-W (2012) Scheduling with multi-attribute setup times. Comput Ind Eng 63(2):494–502

    Article  Google Scholar 

  19. 19.

    E. Alcali, J. Geunes, P.M.Pardalos, H.E. Romeijn, and Z.J. Shen (2004). Applications of supply chain management and E-commerce research in industry. Kluwer, Norwell, MA

  20. 20.

    Mazdeh MM, Sarhadi M, Hindi KS (2008) A branch-and-bound algorithm for single-machine scheduling with batch delivery and job release times. Comput Oper Res 35(4):1099–1111

    Article  MATH  MathSciNet  Google Scholar 

  21. 21.

    Gordon VS, Strusevich VA (2009) Single machine scheduling and due date assignment with positionally dependent processing times. Eur J Oper Res 198(1):57–62

    Article  MATH  MathSciNet  Google Scholar 

  22. 22.

    Bard JF, Nananukul N (2010) A branch-and-price algorithm for an integrated production and inventory routing problem. Comput Oper Res 37(12):2202–2217

    Article  MATH  MathSciNet  Google Scholar 

  23. 23.

    Chrétienne P, Hazır Ö, Kedad-Sidhoum S (2011) Integrated batch sizing and scheduling on a single machine. J Sched 14(6):541–555

    Article  MathSciNet  Google Scholar 

  24. 24.

    Mazdeh MM, Shashaani S, Ashouri A, Hindi KS (2011) Single-machine batch scheduling minimizing weighted flow times and delivery costs. Appl Math Model 35(1):563–570

    Article  MATH  MathSciNet  Google Scholar 

  25. 25.

    Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  26. 26.

    Yin M, Yanmei H, Yang F, Li X, Wenxiang G (2011) A novel hybrid K-harmonic means and gravitational search algorithm approach for clustering. Expert Syst Appl 38(8):9319–9324

    Article  Google Scholar 

  27. 27.

    Behrang MA, Assareh E, Ghalambaz M, Assari MR, Noghrehabadi AR (2011) Forecasting future oil demand in Iran using GSA (gravitational search algorithm). Energy 36(9):5649–5654

    Article  Google Scholar 

  28. 28.

    Han X, Chang X (2012) Chaotic secure communication based on a gravitational search algorithm filter. Eng Appl Artif Intell 25(4):766–774

    Article  Google Scholar 

  29. 29.

    Mirjalili S, Hashim S, Sardroudi H (2012) Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl Math Comput 218(22):11125–11137

    Article  MATH  MathSciNet  Google Scholar 

  30. 30.

    Han X, Chang X (2012) A chaotic digital secure communication based on a modified gravitational search algorithm filter. Inf Sci 208(15):14–27

    Article  Google Scholar 

  31. 31.

    Precup R-E, David R-C, Petriu EM, Preitl S, Radac M-B (2012) IEEE Trans Ind Inf 8(4):791–800

    Article  Google Scholar 

  32. 32.

    Bahrololoum A, Nezamabadi-pour H, Bahrololoum H, Saeed M (2012) A prototype classifier based on gravitational search algorithm. Appl Soft Comput 12(2):819–825

    Article  Google Scholar 

  33. 33.

    Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) Optimization and approximation in deterministic machine scheduling: a survey. Ann Discrete Math 5:287–326

    Article  MATH  MathSciNet  Google Scholar 

  34. 34.

    Garey MR, Johnson DS (1978) “Strong” NP-completeness results: motivation, examples, and implications. J Assoc Comput Mach 25(3):499–508

    Article  MATH  MathSciNet  Google Scholar 

  35. 35.

    Heo J-H, Lyu J-K, Kim M-K, Park J-K (2012) Application of particle swarm optimization to the reliability centered maintenance method for transmission systems. J Electr Eng Technol 7(6):814–823

    Article  Google Scholar 

  36. 36.

    Mazloumi E, Mesbah M, Ceder A, Moridpour S, Currie G (2012) Efficient transit schedule design of timing points: a comparison of ant colony and genetic algorithms. Transp Res B 46(1):217–234

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Pei.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pei, J., Liu, X., Pardalos, P.M. et al. Application of an effective modified gravitational search algorithm for the coordinated scheduling problem in a two-stage supply chain. Int J Adv Manuf Technol 70, 335–348 (2014). https://doi.org/10.1007/s00170-013-5263-8

Download citation

Keywords

  • Supply chain scheduling
  • Batching
  • Gravitational search algorithm
  • Lower bound
  • Dynamic programming
  • Heuristic algorithm