Skip to main content
Log in

Experimental investigations from conventional to high speed milling on a 304-L stainless steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Last years analytical or finite element models of milling become more efficient and focus on more physical aspects, nevertheless the milling process is still experimentally unknown on a wide range of use. This paper propose to analyse with accuracy milling operations by investigating the cutting forces values, shape of cutting forces curves obtained for different cutting speeds, and related phenomena as tool wear or tool run-out. These detailed experimental data in milling constitute a suitable experimental basis available to develop predictive machining modelling. All the tests have been conducted on the 304-L stainless steel in many cutting configurations and for different tool geometries. The machinability of the 304-L stainless steel with different tools geometries and configurations in shoulder milling is defined by three working zones: a conventional zone permitting stable cutting (low cutting speed; under 200–250 m.min−1), a dead zone (unfavourable for cutting forces level and cutting stability; between 250 and 450 m.min−1), and a high speed machining zone (high cutting speed; up to 450–500 m.min−1). All the used criteria (cutting forces, chips, wear) confirm the existence of these different zones and a correlation is proposed with cutting perturbations as tool run-out, cutting instability, ploughing, and abrasive wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merchant M (1945) Mechanics of the metal cutting process, i. orthogonal cutting. J Appl Phys 16:267–275

    Article  Google Scholar 

  2. Oxley P (1963) Mechanics of metal cutting. ASME 50-60

  3. Ceretti E, Fallbohmer P, Wu W, Altan T (1996) Application of 2D FEM to chip formation in orthogonal cutting. J Mater Process Technol 59:169–180

    Article  Google Scholar 

  4. Baker M (2005) Finite element investigation of the flow stress dependence of chip formation. J Mater Process Technol 167:1–13

    Article  Google Scholar 

  5. Kline WA, DeVor RE, Lindberg JR (1982) The prediction of cutting forces in end milling with application to cornering cuts. Int J Mach Tool Des Res 22–1:7–22

    Article  Google Scholar 

  6. Yellowley I (1985) Observations of the mean values of forces, torque and specific power in peripheral milling process. Int J Mach Tool Des Res 25(4):337–346

    Article  Google Scholar 

  7. Yang M, Park H (1991) The prediction of cutting force in ball-end milling. Int J Mach Tool Manuf 31(1):45–54

    Article  Google Scholar 

  8. Altintas Y, Lee P (1996) A general mechanics and dynamics model for helical end mills. CIRP Ann Manuf Technol 1:59–64

    Article  Google Scholar 

  9. Engin S, Altintas Y (2001) Mechanics and dynamics of general milling cutters. Part I: helical end mills. Int J Mach Tool Manuf 44:2195–2212

    Article  Google Scholar 

  10. Engin S, Altintas Y (2001) Mechanics and dynamics of general milling cutters. Part II: inserted cutters. Int J Mach Tool Manuf 41:2213–2231

    Article  Google Scholar 

  11. Zhu R, Kapoor SG, DeVor RE (2001) Mechanistic modelling of the ball end milling process for multi-axis machining of free-form surfaces. Trans ASME, J Manuf Sci Eng 123:369–379

    Article  Google Scholar 

  12. Fontaine M, Devillez A, Moufki A, Dudzinski D (2006) Predictive force model for ball end milling and experimental validation with a wavelike form machining test. Int J Mach Tool Manuf 46:367–380

    Article  Google Scholar 

  13. Molinari A, Dudzinski D (1992) Stationnary shear band in high speed machining. C.R. Académie des Sciences de Paris 315:399–405

    MATH  Google Scholar 

  14. Dudzinski D, Molinari A (1997) A modelling of cutting for viscoplastic materials. Int J Mech Sci 39:369–389

    Article  MATH  Google Scholar 

  15. Moufki A, Devillez A, Dudzinski D, Molinari A (2004) Thermomechanical modelling of oblique cutting and experimental validation. Int J Mach Tool Manuf 44(9):971–989

    Article  Google Scholar 

  16. Zeroudi N, Fontaine M, Necib K (2010) Prediction of cutting forces in 3-axes milling of sculptured surfaces directly from CAM tool path. J Intell Manuf 15:1–15

    Google Scholar 

  17. Zeroudi N, Fontaine M (2012) Prediction of machined surface geometry based on analytical modelling of ball-end milling. Procedia CIRP 1:108–113

    Article  Google Scholar 

  18. Shao H, Liu L, Qu HL (2007) Machinability study on 3%Co-12%Cr stainless steel in milling. Wear 263:736–744

    Article  Google Scholar 

  19. D’Errico GE, Bugliosi S, Guglielmi E (1998) Tool-life reliability of cermet inserts in milling tests. Int J Mater Process Technol 77:337–343

    Article  Google Scholar 

  20. Maurel-Pantel A, Fontaine M, Thibaud S, Gelin JC (2012) 3D FEM simulations of shoulder milling operations on a 304L stainless steel. Simul Model Pract Theory 22:13–27

    Article  Google Scholar 

  21. Tekiner Z, Yesilyurt S (2004) Investigation of the cutting parameters depending on process sound during turning of AISI 304 austenitic stainless steel. Mater Des 25:507–513

    Article  Google Scholar 

  22. O’Sullivan D, Cotterell M (2002) Machinability of austenitic stainless steel SS303. Int J Mater Process Technol 124:153–159

    Article  Google Scholar 

  23. Salak A, Vasilko K, Selecka M, Danninger H (2006) New short time face turning method for testing the machinability of PM steels. Int J Mater Process Technol 176:62–69

    Article  Google Scholar 

  24. Senthil Kumar A, Raja Durai A, Sornakumar T (2006) The effect of tool wear on tool life of alumina-based ceramic cutting tools while machining hardened martensistic stainless steel. Int J Mater Process Technol 173:151–156

    Article  Google Scholar 

  25. Akasawa T, Sakurai H, Nakamura M, Tanaka T, Takano K (2003) Effects of free cutting additives on the machinability of austenetic stainless steels. Int J Mater Process Technol 143–144:66–71

    Article  Google Scholar 

  26. Valiorgue F, Rech J, Hamdi H, Bonnet C, Gilles P, Bergheau JM (2008) Modelling of friction phenomena in material removal processes. Int J Mater Process Technol 201:450–453

    Article  Google Scholar 

  27. Valiorgue F, Rech J, Hamdi H, Gilles P, Bergheau JM (2012) 3D modeling of residual stresses induced in finish turning of an AISI304L stainless steel. Int J Mater Process Technol 53:77–90

    Google Scholar 

  28. Bonnet C, Valiorgue F, Rech J, Claudin C, Hamdi H, Bergheau JM, Gilles P (2008) Identification of a friction model-Application to the context of dry cutting of an AISI 316L austenetic stainless steel with a TiN coated carbide tool. Int J Mach Tool Manuf 48:1211–1223

    Article  Google Scholar 

  29. Johnson GR, Cook JR (1983) Constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. Proceedings of 7th Symposium On Ballistics, Netherlands

  30. Maurel-Pantel A, Michel G, Thibaud S, Fontaine M, Gelin JC (2008) 3D FEM simulations of milling on a 304L stainless steel. Steel Res Int 79(2):726–733

    Google Scholar 

  31. Maurel A, Fontaine M, Thibaud S, Michel G, Gelin JC (2008) Inverse Method for Identification of Material Parameters Directly from Milling Experiments. Int J Mater Form 1:1435–1438

    Article  Google Scholar 

  32. Fontaine M, Devillez A, Dudzinski D (2007) Parametric geometry for modelling of milling operations. Int J Mach Mach Mater 2:186–205

    Google Scholar 

  33. More AS, Jiang W, Brown WD, Malshe AP (2006) Tool wear and machining performance of cBN–TiN coated carbide inserts and PCBN compact inserts in turning AISI 4340 hardened steel. J Mater Process Technol 180(1–3):253–262

    Article  Google Scholar 

  34. Chandrasekaran H, Johansson JO (1994) Chip Flow and Notch Wear Mechanisms during the Machining of High Austenitic Stainless Steels. CIRP Ann Manuf Technol Vol 43(1):101–105

    Article  Google Scholar 

  35. Gilbin A, Fontaine M, Michel G, Thibaud S, Picard P (2013) Capability of tungsten carbide micro-mills to machine hardened tool steel International. J Precis Eng Manuf 14(1):23–28

    Article  Google Scholar 

  36. Fontaine M, Moufki A, Devillez A, Dudzinski D (2007) Modelling of cutting forces in ball-end milling with tool-surface inclination. Part II: Influence of cutting conditions, run-out, ploughning and inclination angle. J Mater Process Technol 189:85–96

    Article  Google Scholar 

  37. Abukhshim NA, Mativenga PT, Sheikh MA (2006) Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. Int J Mach Tools Manuf 46(7–8):782–800

    Article  Google Scholar 

  38. Abou-El-Hossein KA, Yahya Z (2005) High-speed end-milling of AISI 304 stainless steels using new geometrically developed carbide inserts. J Mater Process Technol 162–163:596–602

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Maurel-Pantel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurel-Pantel, A., Fontaine, M., Michel, G. et al. Experimental investigations from conventional to high speed milling on a 304-L stainless steel. Int J Adv Manuf Technol 69, 2191–2213 (2013). https://doi.org/10.1007/s00170-013-5159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5159-7

Keywords

Navigation