Skip to main content
Log in

Monitoring multivariate–attribute processes based on transformation techniques

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Control charts are widely used in monitoring the quality of a product or a process. In most of the cases, quality of a product or a process can be characterized by two or more correlated quality characteristics. Many control charts have been proposed for monitoring multivariate or multi-attribute quality characteristics, separately, but sometimes the correlated variables and attribute quality characteristics represents the quality of a process. In this paper, the use of four transformation methods is proposed to monitor the multivariate–attribute processes. In the first one, the distribution of correlated variables and attribute quality characteristics are transformed to approximate multivariate normal distribution, and then the transformed data are monitored by multivariate control charts including T 2 and MEWMA. Based on the second transformation method, the correlated variables and attribute quality characteristics are transformed, such that the correlation between the quality characteristics approaches to zero, then univariate control charts are used in monitoring the transformed data. In the third and fourth proposed methods, a combination of two transformation methods is used to make the quality characteristics independent and to transform them to normal distribution. The difference between the third and fourth method is the order of using the transformation techniques. The performance of the proposed methods is evaluated by using simulation studies in terms of average run length criterion. Finally, the proposed approach is applied to a real dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hotelling H (1947) Multivariate quality control in techniques of statistical analysis. McGraw-Hill, New York

    Google Scholar 

  2. Montgomery DC (2005) Introduction to statistical quality control, 5th edn. John Wiley & Sons, New York

    MATH  Google Scholar 

  3. Mason RL, Young JC (2002) Multivariate statistical process control with industrial applications. ASA/SIAM, Philadelphia

    Book  MATH  Google Scholar 

  4. Lowry CA, Woodall WH, Champ CW, Rigdon SE (1992) A multivariate exponentially weighted moving average control chart. Technometrics 34:46–53

    Article  MATH  Google Scholar 

  5. Healy JD (1987) A note on multivariate CUSUM procedures. Technometrics 29:409–412

    Article  Google Scholar 

  6. Guh RS (2007) On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach. Qual Reliab Eng Int 23:367–385

    Article  Google Scholar 

  7. Yu JB, Xi LF (2009) A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes. Expert Syst Appl 36:909–921

    Article  Google Scholar 

  8. Atashgar K, Noorossana R (2011) An integrating approach to root cause analysis of a bivariate mean vector with a linear trend disturbance. Int J Adv Manuf Technol 52:407–420

    Article  Google Scholar 

  9. Bersimis S, Psarakis S, Panaretos J (2007) Multivariate statistical process control charts: an overview. Qual Reliab Eng Int 23:517–543

    Article  Google Scholar 

  10. Niaki STA, Abbasi B (2009) Monitoring multi-attribute processes based on NORTA inverse transformed vectors. Comm Statist Theory Methods 38:964–979

    Article  MathSciNet  MATH  Google Scholar 

  11. Cozzucoli PC (2009) Process monitoring with multivariate p-control chart. Int J Qual Stat Reliab. doi:10.1155/2009/707583, Article ID 707583

    MATH  Google Scholar 

  12. Taleb H (2009) Control charts applications for multivariate attribute processes. Comput Ind Eng 56:399–410

    Article  Google Scholar 

  13. Ryan AG, Woodall WH (2010) Control charts for Poisson count data with varying sample sizes. J Qual Technol 42:260–275

    Google Scholar 

  14. Chiu JE, Kuo TI (2010) Control charts for fraction nonconforming in a bivariate binomial process. J Appl Stat 37:1717–1728

    Article  MathSciNet  Google Scholar 

  15. Niaki STA, Nasaji SA (2011) A hybrid method of artificial neural network and simulated annealing in monitoring autocorrelated multi-attribute processes. Int J Adv Manuf Technol 56:777–788

    Article  Google Scholar 

  16. Li Y, Tsung F (2011) Multiple attribute control charts with false discovery rate control. Qual Reliab Eng Int 28:857–871

    Google Scholar 

  17. Topalidou E, Psarakis S (2009) Review of multinomial and multiattribute quality control charts. Qual Reliab Eng Int 25:773–804

    Article  Google Scholar 

  18. Kang L, Brenneman WA (2010) Product defect rate confidence bound with attribute and variable data. Qual Reliab Eng Int 27:353–368

    Article  Google Scholar 

  19. Ganjali M (2003) A model for mixed continuous and discrete responses with possibility of missing responses. Sci Islam Repub Iran 14:53–60

    MathSciNet  Google Scholar 

  20. Doroudyan MH, Amiri A (2013) Monitoring correlated variable and attribute quality characteristics based on NORTA inverse technique, to appear in Int. J. Prod. Qual. Manag.

  21. S. Golnabi and A.A. Houshmand, Multivariate Shewhart x-bar chart, International Statistical. 4 (1999), available at http://interstat.stat.vt.edu/interstat/index/sep99.html

  22. Anscombe FJ (1948) The transformation of Poisson, binominal, and negative binominal data. Biometrika 35:246–254

    MathSciNet  MATH  Google Scholar 

  23. Ryan TP (1989) Statistical methods for quality improvement. John Wiley & Sons, New York

    Google Scholar 

  24. Quesenberry CP (1997) SPC methods for quality improvement. John Wiely & Sons, New York

    Google Scholar 

  25. Niaki STA, Abbasi B (2007) Skewness reduction approach in multi-attribute process monitoring. Comm Statist Theory Methods 36:2313–2325

    Article  MathSciNet  MATH  Google Scholar 

  26. Jackson JE (1991) A User’s guide to principle component. John Wiley & Sons, New York

    Book  Google Scholar 

  27. Niaki STA, Abbasi B (2008) A transformation technique in designing multi-attribute C control charts. Sci Iran 15:125–130

    MATH  Google Scholar 

  28. Wu Z, Wang Q (1996) Bootstrap control charts. Qual Eng 9:143–150

    Article  Google Scholar 

  29. Roberts SW (1959) Control charts tests based on geometric moving averages. Technometrics 1:239–250

    Article  Google Scholar 

  30. Jarque CM, Bera AK (1987) A test for normality of observations and regression residuals. Int Stat Rev 55:163–172

    Article  MathSciNet  MATH  Google Scholar 

  31. Cherubini U, Luciano E, Vecchiato W (2004) Copula methods in finance. John Wiley & Sons, England

    Book  MATH  Google Scholar 

  32. N. Munier, A Strategy for Using Multicriteria Analysis in Decision-Making, 1st ed., Springer, 2011.

  33. Kamal MR, Varela AE, Patterson WI (1999) Control of part weight in injection molding of amorphous thermoplastics. Polym Eng Sci 39:940–952

    Article  Google Scholar 

  34. Yang Y, Gao F (2006) Injection molding product weight: online prediction and control based on a nonlinear principal component regression model. Polym Eng Sci 46:540–548

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Amiri.

Appendices

Appendix A: Proof that the transformed data are uncorrelated after symmetric root transformation

$$ E\left({\displaystyle {\boldsymbol{\Sigma}}_{\mathbf{x}}^{-\frac{1}{2}}\left(\mathbf{x}-{\boldsymbol{\upmu}}_{\mathbf{x}}\right)}\right)={\displaystyle {\boldsymbol{\Sigma}}_{\mathbf{x}}^{-\frac{1}{2}}E\left(\mathbf{x}-{\boldsymbol{\upmu}}_{\mathbf{x}}\right)}={\displaystyle {\boldsymbol{\Sigma}}_{\mathbf{x}}^{-\frac{1}{2}}\left(E\left(\mathbf{x}\right)-{\boldsymbol{\upmu}}_{\mathbf{x}}\right)=}{\displaystyle {\boldsymbol{\Sigma}}_{\mathbf{x}}^{-\frac{1}{2}}\left({\boldsymbol{\upmu}}_{\mathbf{x}}-{\boldsymbol{\upmu}}_{\mathbf{x}}\right)=}{\displaystyle {\boldsymbol{\Sigma}}_{\mathbf{x}}^{-\frac{1}{2}}(0)=}0 $$
$$ \begin{array}{l} Cov\left({\displaystyle {\boldsymbol{\Sigma}}_{\mathbf{x}}^{-\frac{1}{2}}\left(\mathbf{x}-{\boldsymbol{\upmu}}_{\mathbf{x}}\right)}\right)= Cov\left({\displaystyle {\boldsymbol{\Sigma}}_{\mathbf{x}}^{-\frac{1}{2}}\mathbf{x}-{\displaystyle {\boldsymbol{\Sigma}}_{\mathbf{x}}^{-\frac{1}{2}}{\boldsymbol{\upmu}}_{\mathbf{x}}}}\right)= Cov\left({\displaystyle {\boldsymbol{\Sigma}}_{\mathbf{x}}^{-\frac{1}{2}}\mathbf{x}}\right)=\left({\boldsymbol{\Sigma}}_{\mathbf{x}}^{-\frac{1}{2}}\right)\left({\boldsymbol{\Sigma}}_{\mathbf{x}}\right){\left({\boldsymbol{\Sigma}}_{\mathbf{x}}^{-\frac{1}{2}}\right)}^{\prime }=\hfill \\ {}=\left({\boldsymbol{\Sigma}}_{\mathbf{x}}^{-\frac{1}{2}}\right)\left({\boldsymbol{\Sigma}}_{\mathbf{x}}^{\frac{1}{2}}{\boldsymbol{\Sigma}}_{\mathbf{x}}^{\frac{1}{2}}\right)\left({\boldsymbol{\Sigma}}_{\mathbf{x}}^{-\frac{1}{2}}\right)=\left({\boldsymbol{\Sigma}}_{\mathbf{x}}^{-\frac{1}{2}}{\boldsymbol{\Sigma}}_{\mathbf{x}}^{\frac{1}{2}}\right)\left({\boldsymbol{\Sigma}}_{\mathbf{x}}^{\frac{1}{2}}{\boldsymbol{\Sigma}}_{\mathbf{x}}^{-\frac{1}{2}}\right)=\mathbf{I}*\mathbf{I}=\mathbf{I}\hfill \end{array} $$

Appendix B: The dataset for real case in Sect. 5

Table 5 The real dataset

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doroudyan, M.H., Amiri, A. Monitoring multivariate–attribute processes based on transformation techniques. Int J Adv Manuf Technol 69, 2161–2172 (2013). https://doi.org/10.1007/s00170-013-5149-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5149-9

Keywords

Navigation