Skip to main content
Log in

Gouge-free voxel-based machining for parallel processors

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Manufacturers produce complex parts by utilizing computer-aided manufacturing (CAM) software to generate tool paths for a machine tool to follow. CAM systems traditionally rely on parametric surface representations of the parts and complex algorithms to produce the tool paths. This paper presents a new path generation framework that is based on parallel algorithms and hardware that utilizes voxel models. The use of new parallel algorithms allows rapid calculations of tool paths automatically from the voxel model. The core components of this framework are a method of generating digital voxel models from tessellated surface models, a method to obtain digital surface information by a parallel ray-casting approach, and a new approach to calculate gouge-free tool paths in parallel from surface information and generalized cutting geometry. The performance of utilizing digital models within this framework is then discussed with respect to timing and actual cutting results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Broomhead P, Edkins M (1986) Generating NC data at the machine tool for the manufacture of free-form surfaces. Int J Prod Res 24(1):1–14

    Article  Google Scholar 

  2. Elber G, Cohen E (1993) Tool path generation for freeform surface models. Proceedings on the second ACM symposium on solid modeling and applications, 1993. pp 419–428

  3. Loney GC, Ozsoy TM (1987) NC machining of free form surfaces. Comput-Aided Des 19(2):85–90

    Article  MATH  Google Scholar 

  4. Bobrow JE (1985) NC machine tool path generation from CSG part representations. Comput-Aided Des 17(2):69–76

    Article  Google Scholar 

  5. Huang Y, Oliver JH (1994) Non-constant parameter NC tool path generation on sculptured surfaces. Int J Adv Manuf Technol 9(5):281–290

    Article  Google Scholar 

  6. Hwang JS (1992) Interference-free tool-path generation in the NC machining of parametric compound surfaces. Comput-Aided Des 24(12):667–676

    Article  MATH  Google Scholar 

  7. Kim S-J, Yang M-Y (2006) A CL surface deformation approach for constant scallop height tool path generation from triangular mesh. Int J Adv Manuf Technol 28:314–320

    Article  Google Scholar 

  8. Suresh K, Yang DCH (1994) Constant scallop-height machining of free-form surfaces. J Eng Ind 116(2):253–259

    Article  Google Scholar 

  9. Yuwen S et al (2006) Iso-parametric tool path generation from triangular meshes for free-form surface machining. Int J Adv Manuf Technol 28(7):721–726

    Article  Google Scholar 

  10. Yang DCH et al (2003) Boundary-conformed toolpath generation for trimmed free-form surfaces via Coons reparametrization. J Mater Process Tech 138(1–3):138–144

    Article  Google Scholar 

  11. Park S, Choi BK (2000) Tool-path planning for directio-parallel area milling. Comput-Aided Des 32(1):17–25

    Article  MathSciNet  Google Scholar 

  12. Kim BH, Choi BK (2000) Guide surface based tool path generation in 3-axis milling: an extension of the guide plane method. Comput-Aided Des 32(3):191–199

    Article  Google Scholar 

  13. Ding S et al (2003) Adaptive iso-planar tool path generation for machining of free-form surfaces. Comput-Aided Des 35(2):141–153

    Article  Google Scholar 

  14. Lasemi A, Xue D, Gu P (2010) Recent development in CNC machining of freeform surfaces: a state-of-the-art review. Comput-Aided Des 42(7):641–654

    Article  Google Scholar 

  15. Duncan JP, Mair SG (1983) Sculptured surfaces in engineering and medicine. Cambridge University Press, New York

    Google Scholar 

  16. Jun CS, Kim DS, Park S (2002) A new curve-based approach to polyhedral machining. Comput-Aided Des 34(5):379–389

    Article  Google Scholar 

  17. Choi BK, Jun CS (1989) Ball-end cutter interference avoidance in NC machining of sculptured surfaces. Comput-Aided Des 21(6):371–378

    Article  MATH  Google Scholar 

  18. Choi BK et al (1988) Compound surface modelling and machining. Comput-Aided Des 20(3):127–136

    Article  MATH  Google Scholar 

  19. Choi BK, Km DH, Jerad RB (1997) C-space approach to tool-path generation for die and mold machining. Comput-Aided Des 29(9):657–669

    Article  Google Scholar 

  20. Takeuchi Y et al (1989) Development of a personal CAD/CAM system for mold manufacture based on solid modeling techniques. Ann CIRP 38(1):429–432

    Article  Google Scholar 

  21. Inui M (2003) Fast inverse offset computation using polygon rendering hardware. Computer-Aided Design 35(2):191–201

    Article  MathSciNet  Google Scholar 

  22. nVIDIA (2013) GPU accelerated research. http://www.nvidia.com/object/cuda_home.html. Accessed 25 Sept 2009

  23. Hwu WM et al (2009) Compute unified device architecture application suitability. Comput Sci Eng 11:16–26

    Article  Google Scholar 

  24. McMains S, Kardekar R, Burton G (2006) Finding feasible mold parting directions using graphics hardware. Comput-Aided Des 38(4):327–341

    Article  Google Scholar 

  25. Gray PJ, Ismail F, Bedi S (2004) Graphics-assisted rolling ball method for 5-axis surface machining. Comput-Aided Des 36:653–663

    Article  Google Scholar 

  26. Gray P, Ismail F, Bedi S (2004) Arc-intersect method for 5-axis tool positioning. Comput-Aided Des 37:663–674

    Article  Google Scholar 

  27. Dokken T, Hagen TR, Hjelmervik JM (2005) The GPU as a high performance computational resource. Proceedings of the 21st spring conference on Computer graphics, 2005. p 21–26

  28. Roth D, Ismail F, Bedi S (2005) Mechanistic modelling of the milling process using complex tool geometry. Int J Adv Manuf Technol 25(1):140–144

    Article  Google Scholar 

  29. Roth D, Ismail F, Bedi S (2003) Mechanistic modeling of the milling process using an adaptive depth buffer. Comput-Aided Des 35:1287–1303

    Article  Google Scholar 

  30. Inui M, Ohta A (2007) Using a GPU to accelerate die and mold fabrication. IEEE Comput Graph Appl 27:82–88

    Article  Google Scholar 

  31. Carter JA, Tucker TM, Kurfess TR (2008) 3-Axis CNC path planning using depth buffer and fragment shader. Comput-Aided Des Appl 5(5):612–621

    Google Scholar 

  32. Stone SS et al (2008) Accelerating advanced MRI reconstructions on GPUs. J Parallel Distr Comp 68(10):1307–1318

    Article  Google Scholar 

  33. Appel A (1968) Some techniques for shading machine renderings of solids. In Proceedings of the AFIPS Joint Computer Conferences. 1968. Atlantic City, New Jersey

  34. Cook RL, Porter T, Carpenter L (1984) Distributed ray tracing. ACM SIGGRAPH Comput Graphics 18(3):137–147

    Article  Google Scholar 

  35. Roth SD (1982) Ray casting for modeling solids. Comput Graph Image Process 18:109–144

    Article  Google Scholar 

  36. Glassner (1995) Principles of digital image synthesis. Morgan Kaufman, San Francisco

    Google Scholar 

  37. Griffiths (1994) Toolpath Hilbert's curve 26(11):839–844

    Google Scholar 

  38. D Zhang, Bowyer A (1986) CSG set-theoretic solid modelling and NC machining of blend surfaces. In Proceedings of the second Annual Symposium on Computational Geometry. 1986. Yorktown Heights, New York

  39. Jang D, Kim K, Jung J (2000) Voxel-based virtual multi-axis machining. Int J Adv Manuf Technol 16(10):709–713

    Article  Google Scholar 

  40. Engle K et al (2006) Real-time volume graphics. A K Peters, Ltd., Wellesley

    Google Scholar 

  41. Chiou CJ, Lee YS (1999) A shape-generating approach for multi-axis machining G-buffer models. Comput-Aided Des 31(12):761–776

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Tarbutton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarbutton, J., Kurfess, T.R., Tucker, T. et al. Gouge-free voxel-based machining for parallel processors. Int J Adv Manuf Technol 69, 1941–1953 (2013). https://doi.org/10.1007/s00170-013-5148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5148-x

Keywords

Navigation