Skip to main content

Advertisement

Log in

Bi-objective resource constrained project scheduling problem with makespan and net present value criteria: two meta-heuristic algorithms

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Traditionally, the model of a resource-constrained project-scheduling problem (RCPSP) contains a single objective function of either minimizing project makespan or maximizing project net present value (NPV). In order to be more realistic, in this paper, two multi-objective meta-heuristic algorithms of multi-population and two-phase sub-population genetic algorithms are proposed to find Pareto front solutions that minimize the project makespan and maximize the project NPV of a RCPSP, simultaneously. Based on standard test problems constructed by the RanGen project generator, a comprehensive computational experiment is performed, where response surface methodology is employed to tune the parameters of the algorithms. The metaheuristics are computationally compared, the results are analyzed, and conclusions are given at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbasi B, Shadrokh S, Arkat J (2006) Bi-objective resource constrained project scheduling with robustness and makespan criteria. Appl Math Comput 180:146–152

    Article  MathSciNet  MATH  Google Scholar 

  2. Agarwal R, Tiwari MK, Mukherjee SK (2007) Artificial immune system based approach for solving resource constraint project scheduling problem. Int J Adv Manuf Technol 34:584–593

    Article  Google Scholar 

  3. Al-Fawzan M, Haouari MA (2005) Bi-objective model for robust resource-constrained project scheduling. Int J Prod Econ 96:175–187

    Article  Google Scholar 

  4. Alcaraz J, Maroto C (2001) A robust genetic algorithm for resource allocation in project scheduling. Ann Oper Res 102:83–109

    Article  MathSciNet  MATH  Google Scholar 

  5. Ballestín F, Blanco R (2011) Theoretical and practical fundamentals for multi-objective optimization in resource constrained project scheduling problems. Comput Oper Res 38:51–62

    Article  MathSciNet  MATH  Google Scholar 

  6. Baroum SM, Patterson JH (1996) The development of cash flow weight procedures for maximizing the net present value of a project. J oper manag 14:209–227

    Article  Google Scholar 

  7. Bomsdorf F, Derigs U (2008) A model, heuristic procedure and decision support system for solving the movie shoot scheduling problem. OR Spectr 30:751–772

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang PC, Chen SH, Lin KL (2005) Two-phase sub population genetic algorithm for parallel machine-scheduling problem. Expert Syst Appl 29:705–712

    Article  Google Scholar 

  9. Cochran J, Horng S, Fowler J (2003) A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines. Comput Oper Res 30:1087–1102

    Article  MathSciNet  MATH  Google Scholar 

  10. Collette Y, Siarry P (2003) Multi-objective optimization: principles and case studies. Springer, New York

    Google Scholar 

  11. Davis K, Stam A, Grzybowski R (1992) Resource constrained project scheduling with multiple objectives: a decision support approach. Comput Oper Res 19:657–669

    Article  MATH  Google Scholar 

  12. Demeulemeester EL, Herroelen WS (2002) Project scheduling—a research handbook. Kluwer, Boston

    MATH  Google Scholar 

  13. Demeulmeester EL, Vanhoucke M, Herroelen WS (2003) RanGen: a random network generator for activity-on-the node networks. J Sched 6:13–34

    Article  Google Scholar 

  14. Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12:214–219

    Google Scholar 

  15. Hapke M, Jaszkiewicz A, Słowinski R (1998) Interactive analysis of multiple-criteria project scheduling problems. Eur J Oper Res 107:315–324

    Article  MATH  Google Scholar 

  16. Hartmann S, Briskorn D (2010) A survey of variants and extensions of the resource-constrained project scheduling problem. Eur J Oper Res 207:1–14

    Article  MathSciNet  MATH  Google Scholar 

  17. Herroelen WS, De Reyck B, Demeulemeester EL (1999) Resource-constrained project scheduling: a survey of recent developments. Comput Oper Res 25:279–302

    Article  Google Scholar 

  18. Hyun C, Kim Y, Kin Y (1998) A genetic algorithm for multiple objective sequencing problems in mixed model assembly. Comput Oper Res 25:675–690

    Article  MATH  Google Scholar 

  19. Knowles JD, Corne DW (2002) On metrics for comparing non-dominated sets. In: 2002 Congress on Evolutionary Computation, 711–716

  20. Myers RH, Montgomery DC (1995) Response surface methodology: process and product optimization using designed experiments. Wiley, New York

    MATH  Google Scholar 

  21. Najafi AA, Niaki STA (2006) A genetic algorithm for resource investment problem with discounted cash flows. Appl Math Comput 183:1057–1070

    Article  MathSciNet  MATH  Google Scholar 

  22. Najafi AA, Niaki STA, Shahsavar M (2009) A parameter-tuned genetic algorithm for the resource investment problem with discounted cash flows and generalized precedence relations. Comput Oper Res 36:2994–3001

    Article  MATH  Google Scholar 

  23. Nudtasomboon N, Randhawa S (1997) Resource-constrained project scheduling with renewable and non-renewable resources and time-resource trade-offs. Comput Ind Eng 32:227–242

    Article  Google Scholar 

  24. Shadrokh S, Kianfar F (2007) A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty. Eur J Oper Res 181:86–101

    Article  MathSciNet  MATH  Google Scholar 

  25. Słowinski R, Soniewicki B, Weglarz J (1994) DSS for multiobjective project scheduling. Eur J Oper Res 79:220–229

    Article  MATH  Google Scholar 

  26. Ulusoy G, Özdamar L (1995) A heuristic scheduling algorithm for improving the duration and net present value of a project. Int J Oper Production Manag 15:89–98

    Article  Google Scholar 

  27. Ulusoy G, Sivrikaya-Serfoglu F, Şahin Ş (2001) Four payment models for the multi-mode resource constrained project scheduling problem with discounted cash flows. Ann Oper Res 102:237–261

    Article  MathSciNet  MATH  Google Scholar 

  28. Viana A, de Sousa J (2000) Using metaheuristics in multiobjective resource constrained project scheduling. Eur J Oper Res 120:359–374

    Article  MATH  Google Scholar 

  29. Voβ S, Witt A (2007) Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: a real-world application. Int J Prod Econ 105:445–458

    Article  Google Scholar 

  30. Waligora G (2008) Discrete-continuous project scheduling with discounted cash flows—a tabu search approach. Comput Oper Res 35:2141–2153

    Article  MathSciNet  MATH  Google Scholar 

  31. Zemel E (1981) Measuring the quality of approximate solutions to zero–one programming problems. Math Oper Res 6:319–327

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang H, Li X, Li H, Huang F (2005) Particle Swarm Optimization-based schemes for resource constrained project scheduling. Autom Constr 14:393–404

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Taghi Akhavan Niaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalili, S., Najafi, A.A. & Niaki, S.T.A. Bi-objective resource constrained project scheduling problem with makespan and net present value criteria: two meta-heuristic algorithms. Int J Adv Manuf Technol 69, 617–626 (2013). https://doi.org/10.1007/s00170-013-5057-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5057-z

Keywords

Navigation