Robust optimization of the energy efficiency of the cold roll forming process

  • John Paralikas
  • Konstantinos Salonitis
  • George ChryssolourisEmail author


This paper proposes a hybrid modeling methodology for the robust optimization of cold roll forming process parameters. Energy efficiency is considered with the utilization of both analytical and computational models. A robust design algorithm is developed for the calculation of the optimized energy efficiency indicator through an analytical model at a low computational cost. The calculated optimum energy efficient solution is validated by a finite elements model (FEM) under specific quality constraints: the mapping of longitudinal strains, along a roll forming direction and a cross-sectional distribution, major strains on FLD, profile thickness reduction, and cross-sectional dimensional error. A robust design optimization towards the energy efficiency of a U-channel profile is demonstrated, and the effect of process parameters on the energy efficiency indicator is calculated. The paper arrived at the conclusion that the factors with the dominant effect on energy efficiency are roll gap, roller radius, and bending angle concept, with 30.96, 24.77, and 23.62 % contribution, respectively. Verification of the quality constraints over FEM has proven the feasibility of the optimum solution.


Cold roll forming Energy efficiency Optimization Robust design Noise factors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chryssolouris, G. (2005) Manufacturing systems—theory and practice, 2nd edn. Springer, BerlinGoogle Scholar
  2. 2.
    Lange, K. (1985) Handbook of metal forming. McGraw-Hill, New YorkGoogle Scholar
  3. 3.
    Bonte MHA, Boogaard AH, Huetink J (2008) An optimization strategy for industrial metal forming processes. Struct Multidisc Optim 35:571–586. doi: 10.1007/s00158-007-0206-3 CrossRefGoogle Scholar
  4. 4.
    Jurecka, F. (2007) Robust design optimization based on metamodeling techniques. PhD thesis, Technical University of MunichGoogle Scholar
  5. 5.
    Hou B, Wang W, Li S, Lin S, Xia ZC (2010) Stochastic analysis and robust optimization for a deck lid inner panel stamping. Mater Des 31:1191–1199. doi: 10.1016/j.matdes.2009.09.033 CrossRefGoogle Scholar
  6. 6.
    Zeng G, Li SH, Yu ZQ, Lai XM (2009) Optimization design of roll profiles for cold roll forming based on response surface method. Mater Des 30:1930–1938. doi: 10.1016/j.matdes.2008.09.018 CrossRefGoogle Scholar
  7. 7.
    Hu W, Yao L-G, Hua Z-Z (2008) Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method. J Mater Process Technol 197:77–88. doi: 10.1016/j.jmatprotec.2007.06.018 CrossRefGoogle Scholar
  8. 8.
    Sun G, Li G, Gong Z, Cui Z, Yang X, Li Q (2010) Multiobjective robust optimization method for drawbead design in sheet metal forming. Mater Des 31:1917–1929. doi: 10.1016/j.matdes.2009.10.050 CrossRefGoogle Scholar
  9. 9.
    Tang Y, Chen Y (2009) Robust design of sheet metal forming process based on adaptive importance sampling. Struct Multidisc Optim 39:531–544. doi: 10.1007/s00158-008-0343-3 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ingarao G, Lorenzo R, Micari F (2009) Internal pressure and counterpunch action design in Y-shaped tube hydroforming processes: a multi-objective optimization approach. Comput Struct 87:591–602. doi: 10.1016/j.compstruc.2009.02.003 CrossRefGoogle Scholar
  11. 11.
    Oh M, Kim N (2008) Optimum design of roll forming process of slide rail using design of experiments. J Mech Sci Technol 22:1537–1543. doi: 10.1007/s12206-008-0430-9 CrossRefGoogle Scholar
  12. 12.
    Wei L, Yuying Y (2008) Multi-objective optimization of sheet metal forming process using Pareto-based genetic algorithm. J Mater Process Technol 208:499–506. doi: 10.1016/j.jmatprotec.2008.01.014 CrossRefGoogle Scholar
  13. 13.
    Donglai W, Zhenshan C, Jun C (2008) Optimization and tolerance prediction of sheet metal forming process using response surface model. Comput Mater Sci 42:228–233. doi: 10.1016/j.commatsci.2007.07.014 CrossRefGoogle Scholar
  14. 14.
    Bonte MHA, van den Boogaard AH, Huétink J (2008) An optimization strategy for industrial metal forming processes modeling, screening and solving of optimization problems in metal forming. Struct Multidisc Optim 35:571–586. doi: 10.1007/s00158-007-0206-3 CrossRefGoogle Scholar
  15. 15.
    Li DY, Peng YH, Yin JL (2007) Optimization of metal-forming process via a hybrid intelligent optimization technique. Struct Multidisc Optim 34:229–241. doi: 10.1007/s00158-006-0075-1 CrossRefGoogle Scholar
  16. 16.
    Jakumeit J, Herdy M, Nitsche M (2005) Parameter optimization of the sheet metal forming process using an iterative parallel Kriging algorithm. Struct Multidisc Optim 29:498–507. doi: 10.1007/s00158-004-0455-3 CrossRefGoogle Scholar
  17. 17.
    Zhang, G., Hu, S. J., Wu, X. (2003) Numerical analysis and optimization of hemming processes. Journal of Manufacturing Processes 5(1):87–96Google Scholar
  18. 18.
    Paralikas J, Salonitis K, Chryssolouris G (2010) Optimization of the roll forming process parameters—a semi empirical approach. Int J Adv Manuf Technol 47:1041–1052. doi: 10.1007/s00170-009-2252-z CrossRefGoogle Scholar
  19. 19.
    Li W, Hu SJ, Cheng S-W (2002) Robust design and analysis for manufacturing processes with parameter interdependency. SME journal of manufacturing systems 21/2:93–100CrossRefGoogle Scholar
  20. 20.
    Yang, K., El-Haik, B. (2003) Design for six sigma: a roadmap for product development. McGraw-Hill, Inc., New York, ISBN 0-07-141208-5Google Scholar
  21. 21.
    Bucher, C. (2005) Stochastic analysis in structural optimization. Weimarer Optimierungs- und Stochastiktage 2.0–1./2Google Scholar
  22. 22.
    Roos, D., Adam, U., Bucher, C. (2006) Robust design optimization. Weimar Optimization and Stochastic Days 3.0Google Scholar
  23. 23.
    Phadke MS (1989) Quality engineering using robust design. Prentice Hall, Englewood CliffsGoogle Scholar
  24. 24.
    Paralikas J, Salonitis K, Chryssolouris G (2012) Energy efficiency of cold roll forming process. Int J Adv Manuf Technol. doi: 10.1007/s00170-012-4405-8 Google Scholar
  25. 25.
    Arcelormittal (2012). Hot rolling according to requirements. Accessed 1 Nov 2012
  26. 26.
    Dreistern GmbH & Co. KG (2012). Roll forming machine. Accessed 1 Nov 2012
  27. 27.
    Halmos, G.T. (2006) Roll forming handbook. CRC, Boca RatonGoogle Scholar
  28. 28.
    Kunitsyn GA, Golubchik EM, Smirnov PN (2011) Ongoing control of the transverse thickness fluctuation of cold-rolled high-strength strip. Steel in Translation 39(10):920–924. doi: 10.3103/S0967091209100192 CrossRefGoogle Scholar
  29. 29.
    Marciniak, Z., Duncan, J.L., Hu, S.J. (2002) Mechanics of sheet metal forming. Butterworth-Heinemann, Oxford, ISBN 0750653000Google Scholar
  30. 30.
    International Iron & Steel Institute (2006) Advanced High Strength Steel (AHSS) application guidelines. Committee on Automotive Applications, International Iron & Steel Institute, BrusselsGoogle Scholar
  31. 31.
    Paralikas J, Salonitis K, Chryssolouris G (2011) Investigation of the effect of roll forming pass design on main redundant deformations on profiles from AHSS. Int J Adv Manuf Technol 56:475–491. doi: 10.1007/s00170-011-3208-7 CrossRefGoogle Scholar
  32. 32.
    Paralikas J, Salonitis K, Chryssolouris G (2009) Investigation of the effects of main roll-forming process parameters on quality for a V-section profile from AHSS. Int J Adv Manuf Technol 44:223–237. doi: 10.1007/s00170-008-1822-9 CrossRefGoogle Scholar
  33. 33.
    Unirac website (2011). Accessed 28 March 2013
  34. 34.
    Gasparini Roll Forming machines website (2011). Accessed 28 March 2013
  35. 35.
    Samco Machinery Roll Forming solutions website (2011). Accessed 28 March 2013]
  36. 36.
    Samson Roll formed products company website (2011). Accessed 28 March 2013
  37. 37.
    Johnson Bros. metal forming co. website (2011). Accessed 28 March 2013
  38. 38.
    Athens International Airport Solar Park Press Release (2011). Accessed on 28 March 2013
  39. 39.
    Public Power Corporation S.A. website (2011). Accessed 28 March 2013

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • John Paralikas
    • 1
  • Konstantinos Salonitis
    • 1
  • George Chryssolouris
    • 1
    Email author
  1. 1.Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations