Skip to main content
Log in

Morphological optimization of electrospun polyacrylamide/MWCNTs nanocomposite nanofibers using Taguchi’s experimental design

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The morphological characteristic of electrospun polyacrylamide/multi-walled carbon nanotube (PAAm/MWCNTs) nanocomposite nanofibers is optimized in this work using Taguchi’s experimental design. The optimization is performed considering the effect of PAAm concentration, MWCNTs content, flow rate, and applied voltage on average nanofibers diameter. The reasonable dispersion of MWCNTs in PAAm solution is first ascertained via optical microscopy method. The experimental data required for the optimization process are then provided by statistical calculations on field-emission scanning electron microscopy images of the samples formulated based on a designed L 9 orthogonal array. PAAm concentration is found to have the most contribution on final fibers morphology according to the results obtained from simultaneous implementation of the analysis of variance and mean effect assessment. Therefore, PAAm concentration, which is in consistence with solution viscosity and surface tension parameter, is found to have the most contribution to forming nanofibers including the finest fiber diameter. On the contrary, the flow rate of solution among the selected parameters shows the least effect on average nanofiber diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang Z-M et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  Google Scholar 

  2. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347

    Article  Google Scholar 

  3. Patra S, Lin R, Bhattacharyya D (2010) Regression analysis of manufacturing electrospun nonwoven nanotextiles. J Mater Sci 45(14):3938–3946

    Article  Google Scholar 

  4. Jack KS et al (2009) The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds. Acta Biomaterialia 5(7):2657–2667

    Article  MathSciNet  Google Scholar 

  5. Liu X, Won Y, Ma PX (2006) Porogen-induced surface modification of nano-fibrous poly(l-lactic acid) scaffolds for tissue engineering. Biomaterials 27(21):3980–3987

    Article  Google Scholar 

  6. Jansen EJP et al (2005) Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering. Biomaterials 26(21):4423–4431

    Article  Google Scholar 

  7. Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Advanced Drug Delivery Reviews 59(14):1392–1412

    Article  Google Scholar 

  8. Jang J-H, Castano O, Kim H-W (2009) Electrospun materials as potential platforms for bone tissue engineering. Advanced Drug Delivery Reviews 61(12):1065–1083

    Article  Google Scholar 

  9. Boland ED et al (2005) Electrospinning polydioxanone for biomedical applications. Acta Biomaterialia 1(1):115–123

    Article  MathSciNet  Google Scholar 

  10. Lannutti J et al (2007) Electrospinning for tissue engineering scaffolds. Materials Science and Engineering: C 27(3):504–509

    Article  Google Scholar 

  11. Lee KY et al (2009) Electrospinning of polysaccharides for regenerative medicine. Advanced Drug Delivery Reviews 61(12):1020–1032

    Article  Google Scholar 

  12. Yoon JJ, Kim JH, Park TG (2003) Dexamethasone-releasing biodegradable polymer scaffolds fabricated by a gas-foaming/salt-leaching method. Biomaterials 24(13):2323–2329

    Article  Google Scholar 

  13. Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006

    Article  Google Scholar 

  14. Elsner JJ, Zilberman M (2009) Antibiotic-eluting bioresorbable composite fibers for wound healing applications: microstructure, drug delivery and mechanical properties. Acta Biomaterialia 5(8):2872–2883

    Article  Google Scholar 

  15. Rho KS et al (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27(8):1452–1461

    Article  Google Scholar 

  16. Qin X-H, Wang S-Y (2006) Filtration properties of electrospinning nanofibers. J Appl Polym Sci 102(2):1285–1290

    Article  Google Scholar 

  17. Ding B et al (2009) Gas sensors based on electrospun nanofibers. Sensors 9(3):1609–1624

    Article  Google Scholar 

  18. Li Z et al (2008) Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. J Am Chem Soc 130(15):5036–5037

    Article  Google Scholar 

  19. Wang X et al (2002) Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Letters 2(11):1273–1275

    Article  Google Scholar 

  20. Lei X et al (2011) Influence of fabricating process on gas sensing properties of ZnO nanofiber-based sensors. Chin Phys Lett 28(4):040701

    Article  Google Scholar 

  21. Lei X et al (2011) Micro humidity sensor with high sensitivity and quick response/recovery based on ZnO/TiO2 composite nanofibers. Chin Phys Lett 28(7):070702

    Article  Google Scholar 

  22. Ko F et al (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15(14):1161–1165

    Article  Google Scholar 

  23. Mazinani S, Ajji A, Dubois C (2009) Morphology, structure and properties of conductive PS/CNT nanocomposite electrospun mat. Polymer 50(14):3329–3342

    Article  Google Scholar 

  24. Baji A, Mai Y-W, Wong S-C (2011) Effect of fiber diameter on the deformation behavior of self-assembled carbon nanotube reinforced electrospun polyamide 6,6 fibers. Mater Sci Eng, A 528(21):6565–6572

    Article  Google Scholar 

  25. Kalita G et al (2008) Taguchi optimization of device parameters for fullerene and poly(3-octylthiophene) based heterojunction photovoltaic devices. Diam Relat Mater 17(4–5):799–803

    Article  Google Scholar 

  26. Gu SY, Ren J, Vancso GJ (2005) Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers. Eur Polym J 41(11):2559–2568

    Article  Google Scholar 

  27. Yördem OS, Papila M, Menceloğlu YZ (2008) Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: an investigation by response surface methodology. Materials & Design 29(1):34–44

    Article  Google Scholar 

  28. Heikkilä P, Harlin A (2008) Parameter study of electrospinning of polyamide-6. Eur Polym J 44(10):3067–3079

    Article  Google Scholar 

  29. Pai C-L, Boyce MC, Rutledge GC (2011) Mechanical properties of individual electrospun PA 6(3)T fibers and their variation with fiber diameter. Polymer 52(10):2295–2301

    Article  Google Scholar 

  30. Park SH (1996) Robust design and analysis for quality engineering. Springer, Heidelberg

    Google Scholar 

  31. Zhang X et al (2004) Gel spinning of PVA/SWNT composite fiber. Polymer 45(26):8801–8807

    Article  Google Scholar 

  32. Ramakrishna S (2005) An introduction to electrospinning and nanofibers. World Scientific, Danvers

    Book  Google Scholar 

  33. Mazinani S, Ajji A, Dubois C (2010) Fundamental study of crystallization, orientation, and electrical conductivity of electrospun PET/carbon nanotube nanofibers. J Polymer Sci, Part B: Polymer Phys 48(19):2052–2064

    Article  Google Scholar 

  34. Majdzadeh-Ardakani K, Navarchian AH, Sadeghi F (2010) Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydr Polym 79(3):547–554

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammadreza Kalaee or Saeedeh Mazinani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amini, N., Kalaee, M., Mazinani, S. et al. Morphological optimization of electrospun polyacrylamide/MWCNTs nanocomposite nanofibers using Taguchi’s experimental design. Int J Adv Manuf Technol 69, 139–146 (2013). https://doi.org/10.1007/s00170-013-5006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5006-x

Keywords

Navigation