An industrial vision system for surface quality inspection of transparent parts

  • S. Satorres MartínezEmail author
  • J. Gómez Ortega
  • J. Gámez García
  • A. Sánchez García
  • E. Estévez Estévez
Original Article


One of the industrial applications of computer vision is the automated detection and characterisation of surface defects. Some types of surface, such as those that are highly reflective or transparent, require the implementation of custom-made systems for automated inspections. The purpose of this article is to present a machine vision system, with an easily configurable hardware–software structure, for surface quality inspection of transparent parts. This structure permits that different products and part models may be inspected by the system. Its hardware is composed of image-capturing devices and mechanisms for manipulating and holding the part to be inspected. One such mechanism is the lighting system, which has been specifically developed to allow real-time quality control of this type of surfaces. As regards software design, a component-based approach has been adopted in order to increase reusage of the code and decrease the time required for configuring any type of part and adapting it for inspection. To test the efficiency and robustness of the industrial setup, a series of tests using a transparent industrial part, specifically, a commercial model of headlamp lens, have been assessed.


Computer vision Automated inspection Software architecture Surface quality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Malamas EN, Petrakis EGM, Zervakis M, Petit L, Legat J-D (2003) A survey on industrial vision systems, applications and tools. Image Vis Comput 21:171–188CrossRefGoogle Scholar
  2. 2.
    Caulier Y, Bourennane S (2008) An image content description technique for the inspection of specular objects. EURASIP J Adv Signal Process, art no 195263Google Scholar
  3. 3.
    Satorres Martínez S, Gómez Ortega J, Gámez García J, Sánchez García A (2012) A machine vision system for defect characterization on transparent parts with non-plane surfaces. Mach Vis Appl 23(1):1–13CrossRefGoogle Scholar
  4. 4.
    Pen X, Chen Y, Yu W, Zhou Z, Sun G (2008) An online defects inspection method for float glass fabrication based on machine vision. Int J Adv Manuf Technol 39:180–1189Google Scholar
  5. 5.
    Telljohann A (2008) Introduction to building a machine vision inspection. In: Hornberg A (ed) Handbook of machine vision. Wiley, Weinheim. ISBN: 3-527-40584-7Google Scholar
  6. 6.
    Oreizy P, Gorlick M, Taylor R (1999) An architecture-based approach to self-adaptive software. IEEE Intell Syst 14(3):54–62CrossRefGoogle Scholar
  7. 7.
    Gámez García J, Gómez Ortega J, Sánchez García A, Satorres Martínez S (2009) Robotic software architecture for multisensor fusion system. IEEE Trans Ind Electron 56(3):766–777CrossRefGoogle Scholar
  8. 8.
    Satorres Martínez S, Gómez Ortega J, Gámez García J, Sánchez García A (2009) An automatic procedure to code the inspection guideline for vehicle headlamp lenses. In: IEEE international conference on mechatronic, ISBN: 978-1-4244-4195, vol 978-1-4244-4195Google Scholar
  9. 9.
    Fabbri P, Messori M, Toselli M, Rocha J, Pilati F (2009) Enhancing the scratch resistance of polycarbonate with polyethylene oxide-silica hybrid coatings. Adv Polym Technol 27(2):117–126CrossRefGoogle Scholar
  10. 10.
    Boby RA, Sonakar PS, Singaperumal M, Ramamoorthy B (2010) Identification of defects on highly reflective ring components and analysis using machine vision. Int J Adv Manuf Technol 52:217–233CrossRefGoogle Scholar
  11. 11.
    Golnabi H, Asadpour A (2007) Design and application of industrial machine vision systems. Robot Comput Integr Manuf 23:630–637CrossRefGoogle Scholar
  12. 12.
    Torres F, Jiménez LM, Candelas FA, Azorín JM, Agulló R (2002) Automatic inspection for phase-shift reflection defects in aluminium web production. J Intell Manuf 13:151–156CrossRefGoogle Scholar
  13. 13.
    Perng D-B, Chou C-C, Chen W-Y (2005) A novel vision system for CRT panel auto-inspection. J Chin Inst Ind Eng 24(5):341–350CrossRefGoogle Scholar
  14. 14.
    Liu H-g, Chen Y-p, Peng X-q, Xie J-m (2011) A classification method of glass defect based on multiresolution and information fusion. Int J Adv Manuf Technol 56:1079–1090CrossRefGoogle Scholar
  15. 15.
    Adamo F, Attivissimo F, Dinisio A, Savino M (2009) An online defects inspection system for satin glass based on machine vision. In: Instrumentation and measurement technology conference 2009. I2MTC ’09. IEEE, Singapore, 5–7 May 2009, art no 5168461, pp 288–293Google Scholar
  16. 16.
    Zhang X-w, Ding Y-q, Lv Y-y, Shi A-y, Liang R-y (2011) A vision inspection system for the surface defects of strongly reflected metal based on multi-class SVM. Expert Syst Appl 38:5930–5939CrossRefGoogle Scholar
  17. 17.
    Salis G, Seulin R, Morel O, Meriaudeau F (2007) Machine vision system for the inspection of reflective parts in the automotive industry. Proc SPIE- Int Soc Opt Eng 6503:65030OCrossRefGoogle Scholar
  18. 18.
    Leopold J, Günther H, Leopold R (2003) New developments in fast 3D-surface quality control. Measurement 33:179–187CrossRefGoogle Scholar
  19. 19.
    Aluze D, Merienne F, Dumont C, Gorria P (2002) Vision system for defect imaging, detection, and characterization on a specular surface of a 3D object. Image Vis Comput 20:569–580CrossRefGoogle Scholar
  20. 20.
    Killing J, Surgenor BW, Mechefske CK (2009) A machine vision system for the detection of missing fasteners on steel stampings. Int J Adv Manuf Technol 41:808–819CrossRefGoogle Scholar
  21. 21.
    Afrah A, Miller G, Fels S (2009) Vision system development through separation of management and processing. In: 11th IEEE international symposium on multimedia, pp 612–617Google Scholar
  22. 22.
    Wang G, Tao L, Di H, Ye X, Shi Y (2012) A scalable distributed architecture for intelligent vision system. IEEE Trans Ind Inf 8(1):91–99CrossRefGoogle Scholar
  23. 23.
    Booch G, Rumbaugh J, Jacobson I (2005) Unified modeling language user guide. Addison-Wesley, ReadingGoogle Scholar
  24. 24.
    Jahr I (2008) Handbook of machine vision. In: Hornberg A (ed) Lighting in machine vision. Wiley, Weinheim. ISBN: 3-527-40584-7Google Scholar
  25. 25.
    Szyperski C, Gruntz D, Murer S (2002) Component software: beyond object-oriented programming. Addison-Wesley, ReadingGoogle Scholar
  26. 26.
    Rajkumar B, Thamarai S, Xingchen C (2009) Object oriented programming with Java: essentials and applications. Tata McGraw Hill Education Private Limited, DharmatalaGoogle Scholar
  27. 27.
    Satorres Martínez S, Gómez Ortega J, Gámez García J, Sánchez García A (2010) An automatic procedure to identify the areas of interest for the automated inspection of headlamp lenses. In: International conference of emerging technologies and factory automation. ISBN: 978-1-4244-6849-2Google Scholar
  28. 28.
    Otsu N (1979) A threshold selection using an iterative selection method. IEEE Trans Syst Man Cybern 9:62–66CrossRefGoogle Scholar
  29. 29.
    Rosin PL (2001) Unimodal thresholding. Pattern Recognit 34(11):2083–2096CrossRefzbMATHGoogle Scholar
  30. 30.
    Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley, New York. ISBN: 0-471-05669-3zbMATHGoogle Scholar
  31. 31.
    Satorres Martínez S, Gómez Ortega J, Gámez García J, Sánchez García A (2009) A sensor planning system for automated headlamp lens inspection. Expert Syst Appl 36(5):8768–8777CrossRefGoogle Scholar
  32. 32.
    Yasnoff WA, Mui JK, Bacus JW (1977) Error measures for scene segmentation. Pattern Recognit 9:217–231CrossRefGoogle Scholar
  33. 33.
    Burdick RK, Borror CM (2003) A review of measurement system capability analysis. J Qual Technol 37(4):342–354Google Scholar
  34. 34.
    Juran JM, De Feo JA (2010) Juran’s quality handbook. McGraw-Hill, New York. ISBN: 978-0071629737Google Scholar
  35. 35.
    Duncan AJ (1986) Quality control and industrial statistics. Irwin Professional Publishing, New York. ISBN: 978-0256035353Google Scholar
  36. 36.
    Smith RR, McCrary SW, Callahan RN (2007) Gauge repeatability and reproducibility studies and measurement system analysis: a multimethod exploration of the state of practice. J Qual Technol 23(1):1–11Google Scholar
  37. 37.
    Automotive Industry Action Group (AIAG) (2002) Measurement system analysis, 3rd edn. AIAG, SouthfieldGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • S. Satorres Martínez
    • 1
    Email author
  • J. Gómez Ortega
    • 1
  • J. Gámez García
    • 1
  • A. Sánchez García
    • 1
  • E. Estévez Estévez
    • 1
  1. 1.Universidad de JaénJaénSpain

Personalised recommendations