Skip to main content
Log in

Machining process parameters optimization for heavy-duty CNC machine tools in sustainable manufacturing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Machining process parameters (MPP) directly affect the machining quality and efficiency of heavy-duty CNC machine tools (HCMT). The selection of MPP is very important to effectively improve machining performance. Machining performance has been closely related to the HCMT running state. In order to maintain HCMT sustainably manufacturing with high accuracy and low consumption after machining performance degradation for a long time running, MPP should be re-optimized according to the current state of the machine tools. Thus, this paper proposed a MPP optimization method for running HCMT to obtain optimal MPP based on current running state. A multi-objective optimization model was built, considering both the linear factors such as machining time and machining cost and nonlinear factors such as chatter in machining process. The nonlinear factors were reflected by the nonlinear dynamic model of machining process. Furthermore, a grid optimization algorithm was introduced to search the optimal MPP from the multi-objective optimization model. Finally, a case study was implemented to verify the feasibility of the nonlinear dynamic model and the superiority of the multi-objective optimization method compared with single-objective optimization method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang TY, Wang WJ, Fan SB, Dong TJ, Li HW, Qin XD (2004) The simulation of the milling optimization parameters for CNC cutting system using self-adaptive genetic algorithms. Manuf Autom 26(8):28–30

    Google Scholar 

  2. Liu M, Chen WL, Zhai JJ (2002) Research on the optimization of machining parameters for milling operations. J Yancheng Inst Technol (Na Sci) 15(01):38–40

    Google Scholar 

  3. Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for constrained parameter optimization problems. Evol Comput 4(1):1–32

    Article  Google Scholar 

  4. Jiang S (2006) Research on NC cutting parameter optimum matching expert system, Tongji University

  5. Jiang B, Yang SC, Zheng ML (2002) Multi-goal optimization of NC cutting parameters. Tool Eng 36(7):22–25

    Google Scholar 

  6. Shen H, Xie LM, Han Y (2005) Multi-target optimization of cutting parameters in NC turning. Journal of Lanzhou Univ. of Tech 31(05):47–49

    Google Scholar 

  7. Abburi NR, Dixit US (2006) A knowledge-based system for the prediction of surface roughness in turning process. Robot Comput IntegrManuf 22(4):363–372

    Article  Google Scholar 

  8. Nandi AK, Pratihar DK (2004) An expert system based on FBFN using a GA to predict surface finish in ultra-precision turning. J Mater Process Technol 155–156:1150–1156

    Article  Google Scholar 

  9. Roy SS (2006) Design of genetic-fuzzy expert system for predicting surface finish in ultra-precision diamond turning of metal matrix composite. J Mater Process Technol 173(3):337–344

    Article  Google Scholar 

  10. Ying YP (2009) Research on process parameters optimization of NC machining process, Jilin University. pp 49–51

  11. Zhang C, Zhou LS, Yu ZY, An LL, Zhou RR (2005) Multi-objective and varying parameter optimization of machining parameters based on NC simulation data. J Comput Aided Des Comp Graph 17(5):1039–1045

    Google Scholar 

  12. Rao RV, Pawar PJ (2010) Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms. Appl Soft Comput 10:445–456

    Article  Google Scholar 

  13. Thepsonthi T, Özel T (2012) Multi-objective process optimization for micro-end milling of Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol 63:903–914. doi:10.1007/s00170-012-3980-z

    Article  Google Scholar 

  14. Zhang SD (2004) Application of improved simulated annealing algorithm in NC machining parameter optimization. Coal Mine Mach 6:76–78

    Google Scholar 

  15. Vijayakumar K, Prabhaharana G, Asokana P, Saravananb R (2003) Optimization of multi-pass turning operations using ant colony system. Int J Mach Tools Manuf 43(15):1633–1639

    Article  Google Scholar 

  16. Qin JH, Li Z (2005) Application of improved particle swarm algorithm in NC machining parameter optimization. Modular Mach Tool Autom Manuf Technique 5:9–11

    Google Scholar 

  17. Sivasakthivel PS, Sudhakaran R Optimization of machining parameters on temperature rise in end milling of Al6063 using response surface methodology and genetic algorithm. Int J Adv Manuf Technol. doi:10.1007/s00170-012-4652-8

  18. Tzeng CJ, Yang YK, Lin YH, Tsai CH (2012) A study of optimization of injection molding process parameters for SGF and PTFE reinforced PC composites. Int J Adv Manuf Technol 63:691–704. doi:10.1007/s00170-012-3933-6

    Article  Google Scholar 

  19. Elangovan S, Anand K, Prakasan K (2012) Parametric optimization of ultrasonic metal welding using response surface methodology and genetic algorithm. Int J Adv Manuf Technol 63:561–572. doi:10.1007/s00170-012-3920-y

    Article  Google Scholar 

  20. Aravind Krishnan S, Samuel GL Multi-objective optimization of material removal rate and surface roughness in wire electrical discharge turning. Int J Adv Manuf Technol. doi:10.1007/s00170-012-4628-8

  21. Wang HJ, Han QS (2004) The software development of grinding parameter optimization model for NC camshaft grinder based on BP. Mach Manuf Eng 5:26–27

    Google Scholar 

  22. Ridwan F, Xu X, Ho FCL (2012) Adaptive execution of an NC program with feed rate optimization. Int J Adv Manuf Technol 63:1117–1130. doi:10.1007/s00170-012-3959-9

    Article  Google Scholar 

  23. Karayel D (2009) Prediction and control of surface roughness in CNC lathe using artificial neural network. J Mater Process Technol 209(7):3125–3137

    Article  Google Scholar 

  24. Oktem H, Erzurumlu T, Erzincanli F (2006) Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm. Mater Des 27(9):735–744

    Article  Google Scholar 

  25. Kim B, Kim K (2004) Prediction of profile surface roughness in CHF3/CF4 plasma using neural network. Appl Surf Sci 222(1–4):17–22

    Article  Google Scholar 

  26. Zain AM, Haron H, Sharif S (2010) Prediction of surface roughness in the end milling machining using artificial neural network. Expert Syst Appl 37(2):1755–1768

    Article  Google Scholar 

  27. El-Sonbaty IA, Khashaba UA, Selmy AI, Ali AI (2008) Prediction of surface roughness profiles for milled surfaces using an artificial neural network and fractal geometry approach. J Mater Process Technol 200(1–3):271–278

    Article  Google Scholar 

  28. Raja SB, Baskar N (2010) Optimization techniques for machining operations: a retrospective research based on various mathematical models. Int J Adv Manuf Technol 48:1075–1090

    Article  Google Scholar 

  29. Pan ZX, Zhang H, Zhu ZQ, Wang JJ (2006) Chatter analysis of robotic machining process. J Mater Process Technol 173:301–309

    Article  Google Scholar 

  30. Yang FL, Zhang B, Yu JY (2003) Chatter suppression with multiple time-varying parameters in turning. J Mater Process Technol 141:431–438

    Article  Google Scholar 

  31. Yang Y, Munoa J, Altintas Y (2010) Optimization of multiple tuned mass dampers to suppress machine tool chatter. Int J Mach Tool Manuf 50:834–842

    Article  Google Scholar 

  32. Guillem Q, Joaquim C (2011) Chatter in machining processes: a review. Int J Mach Tool Manuf 51:363–376

    Article  Google Scholar 

  33. Gao L, Yang Y, Li XY (2010) Research and development of optimization of NC machining parameters. Digit Manuf 22:48–51

    Google Scholar 

  34. Draganescu F, Gheorghe M, Doicin CV (2003) Models of machine tool efficiency and specific consumed energy. J Mater Process Technol 141:9–15

    Article  Google Scholar 

  35. Saidur R, Rahim NA, Hasanuzzaman M (2010) A review on compressed-air energy use and energy savings. Renew Sust Energy Rev 14:1135–1153

    Article  Google Scholar 

  36. Shi HM (2003) Metal cutting theory and practice-a new perspective. Press of Huazhong University of science and technology, Wuhan, pp 359–362

    Google Scholar 

  37. Deng C, Wu J, Mao KM, Xiong Y (2010) Process reliability evaluation for large-sized NC machine tools. Comput Integr Manuf Syst 16(10):2250–2252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, Y., Wu, J., Deng, C. et al. Machining process parameters optimization for heavy-duty CNC machine tools in sustainable manufacturing. Int J Adv Manuf Technol 87, 1237–1246 (2016). https://doi.org/10.1007/s00170-013-4881-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-4881-5

Keywords

Navigation