Adaptive support vector machine-based surface quality evaluation and temperature monitoring. Application to billet continuous casting process

  • Laib dit Leksir Yazid
  • Bouhouche Salah
  • Boucherit Med Seghir
  • Bast Jurgen
ORIGINAL ARTICLE

Abstract

A method for surface quality evaluation and temperature monitoring of the billet in continuous casting is considered in this paper. This method uses the difference between the measured and the filtered temperature computed using an adaptive support vector machine method. The temperature field, measured by an infrared camera, is affected by an important noise called calamine (a metal oxide generated during the cooling process). The quality of the billet’s surface temperature is connected to the secondary cooling behavior, and therefore an evaluation of the calamine effect is needed. Methods such as soft sensing and adaptive support vector machine are used for a global evaluation of calamine intensity on the monitored area of the billet in continuous casting. This kind of approaches is applied in continuous casting process for constructing a complementary condition monitoring system, which allows an online calamine evaluation. Simulation results, based on the measured surface temperature and the adaptive support vector machine analysis, showed that this new combined approach is easily implementable and gives good results when applied online.

Keywords

Continuous casting Surface billet casting Infrared temperature measurement Adaptive support vector machine (ASVM) Process and quality evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    El-Bealy M, Leskinen N, Fredriksson H (1995) Simulation of cooling conditions in secondary cooling zones in continuous casting process. Ironmak Steelmak 22(3):246Google Scholar
  2. 2.
    Holger B (1994). Computersimulation thermischer und mechanischer Vorgänge beim Brammenstranggießen von Stahl, Dissertation Dr-Ing No. 94.10186/3 Bergakademie FreibergGoogle Scholar
  3. 3.
    Biao W, Zhen-ping JI, Wen-hong LIU, Jiao-cheng MA, Zhi XIE (2008) Application of hot strength and ductility test to optimization of secondary cooling system in billet continuous casting process. J Iron Steel Res Int 15(4):16–20CrossRefGoogle Scholar
  4. 4.
    Sigeru K (1984) On the secondary cooling control technology for the continuous casting-direct rolling processes. Nippon Steel Tech Rep 23:69Google Scholar
  5. 5.
    Bast J, Bouhouche S (1997) Mathematishe Modellierung einer Strangießanlage Freiberger Forschungshefte Automatisierung in der Montanindudtrie Freiberg Germany. A839: 37Google Scholar
  6. 6.
    Ji C, Zhu M, Cao X, Luo S (2011) Research and application of soft reduction amount online calculation model for bloom continuous casting process. Proceeding METEC2011. Dusseldorf: 27 June–1 July.Google Scholar
  7. 7.
    Raclevsky M, Válek L (2011) Metal level behaviour in continuous casting tundishes. Proceeding METEC2011, Dusseldorf: 27 June–1 JulyGoogle Scholar
  8. 8.
    Barlocco C (1983) Projet d’un système d’automatisation du refroidissement secondaire en coulée continue. Révue de Métallurgie CIT 12:947Google Scholar
  9. 9.
    Harste K (1996) Process control and strand condition monitoring at Dillinger Hüttenwerke. Révue de Métallurgie CIT 4:1241Google Scholar
  10. 10.
    Lamp T, Köchner H (2011) Optical monitoring of initial solidification in a billet continuous casting mould. Proceeding METEC2011. Dusseldorf: 27 June–1 JulyGoogle Scholar
  11. 11.
    Craig IK, Camisani-Calzolari FR, Pistorius PC (2001) A contemplative stance on the automation of continuous casting in steel processing. Control Eng Pract 9:1013–1020CrossRefGoogle Scholar
  12. 12.
    Marjanovic O, Lennox B, Sandoz D, Smith K, Crofts M (2006) Real-time monitoring of an industrial batch process. Comput Chem Eng 30:1476–1481CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Dudzic MS (2006) Industrial application of multivariate SPC to continuous caster start-up operations for breakout prevention. Control Eng Pract 14:1357–1375CrossRefGoogle Scholar
  14. 14.
    Dukman L, Moon CH, Moon SC, Park HD (2009) Development of healing control technology for reducing breakout in thin slab casters. Control Eng Pract 17:3–13CrossRefGoogle Scholar
  15. 15.
    Manabu K, Nakagawa Y (2008) Data-based process monitoring, process control, and quality improvement: recent development and applications in steel industry. Comput Chem Eng 32:12–24CrossRefGoogle Scholar
  16. 16.
    Xuan TD, Srinivasan R (2008) Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control. Comput Chem Eng 32:230–243CrossRefGoogle Scholar
  17. 17.
    Kadlec P, Gabrys B, Strandt S (2009) Data-driven soft sensors in the process industry. Comput Chem Eng 33:795–814CrossRefGoogle Scholar
  18. 18.
    Vesanto J (2000) Using SOM in data mining. Licentiate thesis, Helsinki University of TechnologyGoogle Scholar
  19. 19.
    Kohonen T (2001) Self-organizing maps. Springer, HeidelbergMATHCrossRefGoogle Scholar
  20. 20.
    Chiang LH, Russell EL, Braatz RD (2001) Fault detection and diagnosis in industrial systems, 2nd edn. Springer, London Berlin HeidelbergMATHCrossRefGoogle Scholar
  21. 21.
    Bouhouche S, Lahreche M, Moussaoui A, Bast J (2007) Quality monitoring using principal component analysis and fuzzy logic. Application in continuous casting process. Am J Appl Sci 4:637–644CrossRefGoogle Scholar
  22. 22.
    Xuan TD, Rajagopalan S (2008) Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control. Comput Chem Eng 32:230–243CrossRefGoogle Scholar
  23. 23.
    Bouhouche S, Laib LY, Bast J (2010) Evaluation-based online support vector machine and fuzzy reasoning. Application to condition monitoring of speeds rolling. Control Eng Pract 18:1060–1068CrossRefGoogle Scholar
  24. 24.
    M. Haag (2005) Autocorrelation of random processes. http://cnx.org/content/m10676/latest/. Accessed Apr 2005
  25. 25.
    Kourti T, Nomikos P, MacGregor JF (1995) Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway. J Process Control 5:277–278CrossRefGoogle Scholar
  26. 26.
    Ge Z, Song Z (2008) Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Control Eng Pract 16:1427–1437CrossRefGoogle Scholar
  27. 27.
    Manabu K, Yoshiaki N (2008) Data-based process monitoring, process control, and quality improvement: recent development and applications in steel industry. Comput Chem Eng 32:12–24CrossRefGoogle Scholar
  28. 28.
    Faggian A, Facco P, Doplicher F, Bezzo F, Barolo M (2009) Multivariate statistical real-time monitoring of an industrial fed-batch process for the production of specialty chemicals. Chem Eng Res Des 87:325–334CrossRefGoogle Scholar
  29. 29.
    Vapnik VN (1995) The nature of statistical learning theory. Springer, HeidelbergMATHCrossRefGoogle Scholar
  30. 30.
    Ceperic V, Gielen G, Baric A (2012) Sparse multikernel support vector regression machines trained by active learning. Expert Syst Appl 39:11029–11035CrossRefGoogle Scholar
  31. 31.
    Li MZZ, Li W (2005) Study on least squares support vector machines algorithm and its application. Proceedings of the 17th IEEE International Conference on tools with artificial intelligence: 1082–3409Google Scholar
  32. 32.
    Desai K, Badhe Y, Tambe SS, Kulkarni BD (2006) Soft sensor development for fed batch bioreactors using support vector regression. Biochem Eng J 27(3):225–239CrossRefGoogle Scholar
  33. 33.
    David LO, Dursun D (2008) Advanced data mining techniques. Springer, HeidelbergMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Laib dit Leksir Yazid
    • 1
    • 2
  • Bouhouche Salah
    • 1
  • Boucherit Med Seghir
    • 2
  • Bast Jurgen
    • 3
  1. 1.Centre de Recherche Scientifique et Technique en Soudage et ContrôleUnité de Recherche Appliquée en Sidérurgie-Métallurgie, URASM–CSCAnnabaAlgeria
  2. 2.Ecole Nationale PolytechniqueEl HarrachAlgeria
  3. 3.HGUM, Institut für Maschinenbau, TU Bergakademie FreibergFreibergGermany

Personalised recommendations