A review on 3D micro-additive manufacturing technologies

An Erratum to this article was published on 16 April 2013

Abstract

New microproducts need the utilization of a diversity of materials and have complicated three-dimensional (3D) microstructures with high aspect ratios. To date, many micromanufacturing processes have been developed but specific class of such processes are applicable for fabrication of functional and true 3D microcomponents/assemblies. The aptitude to process a broad range of materials and the ability to fabricate functional and geometrically complicated 3D microstructures provides the additive manufacturing (AM) processes some profits over traditional methods, such as lithography-based or micromachining approaches investigated widely in the past. In this paper, 3D micro-AM processes have been classified into three main groups, including scalable micro-AM systems, 3D direct writing, and hybrid processes, and the key processes have been reviewed comprehensively. Principle and recent progress of each 3D micro-AM process has been described, and the advantages and disadvantages of each process have been presented.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Accoto D, Carrozza MC, Dario P (2000) Modelling of micropumps using unimorph piezoelectric actuators and ball valves. J Micromech Microeng 10:277–281

    Google Scholar 

  2. 2.

    Adams JJ, DUOSS EB, Malkowski TF, Motala MJ, Ahn BY, Nuzzo RG, Bernhard JT, Lewis JA (2011) Conformal printing of electrically small antennas on three-dimensional surfaces. Adv Mater 23(11)):1335–1340

    Google Scholar 

  3. 3.

    Ainsley C, Reis N, Derby B (2002) Freeform fabrication by controlled droplet deposition of powder filled melts. J Mater Sci 37:3155–3161

    Google Scholar 

  4. 4.

    Alting L, Kimura F, Hansen HN, Bissacco G (2003) Micro engineering. CIRP Ann Manuf Technol 52:635–657

    Google Scholar 

  5. 5.

    Ang TH, Sultana FSA, Hutmacher DW, Wong YS, Fuh JYH, Mo XM, Loh HT, Burdet E, Teoh SH (2002) Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 20:35–42

    Google Scholar 

  6. 6.

    Arcaute K, Mann B, Wicker R (2010) Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomaterialia 6:1047–1054

    Google Scholar 

  7. 7.

    Barry RA, Shepherd RF, Hanson JN, Nuzzo RG, Wiltzius P, Lewis JA (2009) Direct-Write Assembly of 3D Hydrogel Scaffolds for Guided Cell Growth. Adv Mater 21:2407–2410

    Google Scholar 

  8. 8.

    Barron, JA, Wu P, Ladouceur HD, Ringeisen BR (2004) Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 6:139–147

    Google Scholar 

  9. 9.

    Bartolo PJ (2011) Stereolithography: materials, processes and applications. Springer, London

    Google Scholar 

  10. 10.

    Bartolo PJ, Gaspar J (2008) Metal filled resin for stereolithography metal part. CIRP Ann Manuf Technol 57:235–238

    Google Scholar 

  11. 11.

    Becker EW, Ehrfeld W, Hagmann P, Maner A, Munchmeyer D (1986) Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Microelec Eng 4:35–56

    Google Scholar 

  12. 12.

    Beluze L, Bertsch A, Renaud P (1999) Microstereolithography: a new process to build complex 3D objects. In: SPIE symposium on design, test and microfabrication of MEMs/MOEMs, Paris, France

  13. 13.

    Bertsch A, Bernhard P, Vogt C, Renaud P (2000) Rapid prototyping of small size objects. Rapid Prototyping J 6:259–266

    Google Scholar 

  14. 14.

    Bertsch A, Heimgartner S, Cousseau P, Renaud P (2001). 3D micromixers—downscaling large-scale industrial static mixers. In: The 14th IEEE International Conference on Micro Electro Mechanical Systems (MEMS2001), Interlaken, Switzerland. pp. 507–510

  15. 15.

    Bertsch A, Heimgartner S, Cousseau P, Renaud P (2001) Static micromixers based on large-scale industrial mixer geometry. Lab Chip 1:56–60

    Google Scholar 

  16. 16.

    Bertsch A, Jiguet S, Renaud P (2004) Microfabrication of ceramic components by microstereolithography. J Micromech Microeng 14:197–203

    Google Scholar 

  17. 17.

    Bertsch A, Lorenz H, Renaud P (1998). Combining microstereolithography and thick resist UV lithography for 3D microfabrication. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). pp. 18–23.

  18. 18.

    Bertsch A, Lorenz H, Renaud P (1999) 3D microfabrication by combining microstereolithography and thick resist UV lithography. Sensor Actuator Phys 73:14–23

    Google Scholar 

  19. 19.

    Bertsch A, Zissi S, Jezequel JY, Corbel S, Andre JC (1997) Microstereophotolithography using a liquid crystal display as dynamic mask generator. Microsyst Technol 3:42–47

    Google Scholar 

  20. 20.

    Bertsch A, Jezequel YJ, Andre JC (1997) Study of the spatial resolution of a new 3D micro fabrication process; the microstereolithography using a dynamic mask-generator technique. J Photochem Photobiol Chem 107:275–282

    Google Scholar 

  21. 21.

    Bhushan B (2007) Handbook of nanotechnology. Springer, New York

    Google Scholar 

  22. 22.

    Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041

    Google Scholar 

  23. 23.

    Bredt, J.F., Anderson, T.C., Russell, D.B., 2002. Three dimensional printing materials system. US Patent 6,416,850. US Patent and Trademark Office, Z Corporation

  24. 24.

    Brinksmeier E, Riemer O, Stern R (2001). Machining of precision parts and microstructures. In: Proceedings of the 10th International Conference on Precision Engineering (ICPE), Yokohama, Japan, 18–20 July. pp. 3–11

  25. 25.

    Broer DJ, Mol GN, Challa G (1991) In-situ photopolymerization of oriented liquid-crystalline acrylates. Makromol Chem 192:59–74

    Google Scholar 

  26. 26.

    Brousseau EB, Dimov SS, Pham DT (2010) Some recent advances in multi-material micro- and nano-manufacturing. Int J Adv Manuf Technol 47:161–180

    Google Scholar 

  27. 27.

    Butler EJ, Folk C, Cohen A, Vasilyev NV, Chen R, del Nido PJ, Dupont PE (2011). Metal MEMS tools for beating-heart tissue approximation. In: 2011 IEEE International Conference on Robotics and Automation, Shanghai, China

  28. 28.

    Buyer’s guide, envisionTEC GmbH. Available from www.envisiontec.de

  29. 29.

    Campbell AN, Tanner DM, Soden JM, Stewart DK, Doyle A, Adam E, Gibson M, Abramo M (1997). Electrical and chemical characterization of FIB-deposited insulators. In: Proceedings of the 23 International Symposium on Testing and Failure Analysis. pp. 223–230.

  30. 30.

    Cao W, Miyamoto Y (2006) Freeform fabrication of aluminum parts by direct deposition of molten aluminum. J Mater Process Technol 173:209–212

    Google Scholar 

  31. 31.

    Cappi B, Özkol E, Ebert J, Telle R (2008) Direct inkjet printing of Si3N4: characterization of ink, green bodies and microstructure. J Eur Ceram Soc 28:2625–2628

    Google Scholar 

  32. 32.

    Carreño-Morelli E, Martinerie S, Bidaux JE (2007) Three-dimensional printing of shape memory alloys. Mater Sci Forum 534–536:477–480

    Google Scholar 

  33. 33.

    Carrozza MC, Croce N, Magnani B, Dario P (1995) A piezoelectric-driven stereolithography-fabricated micropump. J Micromech Microeng 5:177–179

    Google Scholar 

  34. 34.

    Cawley JD (1999) Solid freeform fabrication of ceramics. Curr Opin Solid State Mater Sci 4:483–489

    Google Scholar 

  35. 35.

    Cesarano J (1999) A review of robocasting technology. In: Dimos D, Danforth SC, Cima MJ (eds) Solid Freeform and Additive Fabrication. Materials Research Society, Warrendale

  36. 36.

    Charmeux JF, Minev R, Dimov S, Minev E, Su S, Harrysson U (2008). Capability study of the Fcubic direct shell process for casting micro-components. 4M Cross Divisional Report. Cardiff University, Cardiff

  37. 37.

    Chatwin CR, Farsari M, Huang S, Heywood HI, Birch PM, Young RCD, Richardson JD (1998) UV microstereolithography system that uses spatial light modulator technology. Appl Optic 37:7514–7522

    Google Scholar 

  38. 38.

    Chen RT, Brown ER, Singh RS (2004). A compact 30 GHZ low loss balanced hybrid coupler fabricated using micromachined integrated coax. In: Proceedings 2004 IEEE Radio and Wireless Conference, Atlanta, GA

  39. 39.

    Cheng YL, Lin JH, Lai JH, Ke CT, Huang YC (2005). Development of dynamic mask photolithography system. In: Proceedings of the 2005 IEEE International Conference on Mechatronics, Taipei, Taiwan. pp. 467–471

  40. 40.

    Choi JW, Ha YM, Won MH, Choi KH, Lee SH (2005). Fabrication of 3-dimensional microstructures using dynamic imageprojection. In: Proceedings of International Conference on Precision Engineering and Micro/Nano Technology in Asia (ASPEN 2005), Shenzhen, China. pp. 472–476

  41. 41.

    Chua CK, Leong KF, Lim CS (2010) Rapid prototyping: principles and applications, 3rd edn. World Scientific, Singapore

    Google Scholar 

  42. 42.

    Clare AT, Chalker PR, Davies S, Sutcliffe CJ, Tsopanos S (2008) Selective laser melting of high aspect ratio 3D nickel–titanium structures two way trained for MEMS applications. Int J Mech Mater Des 4:181–187

    Google Scholar 

  43. 43.

    Cohen A, (2004). Going beyond silicon MEMS with EFAB Technology. White paper. Microfabrica Inc., Burbank

  44. 44.

    Cohen A, (2005). EFAB Technology: unlocking the potential of miniaturized medical devices. EVP, Technology and CTO. Microfabrica Inc., Burbank

  45. 45.

    Cohen A, Chen, R (2007). Microfabricated tissue removal instruments for minimally-invasive procedures. In: 19th International Conference of the Society for Medical Innovation and Technology, Sendai, Japan

  46. 46.

    Cohen A, Chen R, Frodis U, Wu MT, Folk C (2010) Microscale metal additive manufacturing of multi-component medical devices. Rapid Prototyping J 16:209–215

    Google Scholar 

  47. 47.

    Cohen A, Frodis U, Zhang G, (1998). EFAB: batch production of functional, fully-dense metal parts with micron-scale features. In: Solid Freeform Fabrication Symposium Proceedings, The University of Texas, Austin

  48. 48.

    Cohen A, Kruglick E (2006) EFAB technology and applications. In: Gad-el-Hak M (ed) The MEMS handbook, vol 2nd. CRC Press, Boca Raton

    Google Scholar 

  49. 49.

    Cohen A, Wooden S (2005). Monolithic 3-D microfabrication of mechanisms with multiple independently-moving parts. In: Proceedings of IMECE2005: 2005 ASME International Mechanical Engineering Congress and Exposition, Florida.

  50. 50.

    Cohen A, Zhang G, Tseng F, Frodis U, Mansfeld F, Will P (1999). EFAB: rapid, low-cost desktop micromachining of high aspect ratio true 3-D MEMS. In: Proceedings of the IEEE International MEMS 99 Conference. pp. 244–251

  51. 51.

    Crivello JV (1999) The discovery and development of onium salt cationic photoinitiators. J Polymer Sci Polymer Chem 37:4241–4254

    Google Scholar 

  52. 52.

    Crocker JE, Harrison S, Sun LLL, Marcus HL (1998) Using SALDVI and SALD with multi-material structures. J Miner Met Mater Soc 50:21–23

    Google Scholar 

  53. 53.

    Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, Erskine LL, Heikal AA, Kuebler SM, Lee IYS, McCord-Maughon D, Qin J, Röckel H, Rumi M, Wu XL, Marder SR, Perry JW (1999) Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398:51–54

    Google Scholar 

  54. 54.

    Day D, Gu M (1999) Use of two-photon excitation for erasablerewritable three-dimensional bit optical data storage in a photorefractive polymer. Opt Lett 24:948–950

    Google Scholar 

  55. 55.

    Debaes C, Vervaeke M, Volckaerts B, Van Erps J, Desmet L, Ottevaere H, Vynck P, Gomez V, Hermanne A, Thienpont H (2005) Low-cost micro-optical modules for board level optical interconnections. IEEE LEOS Newsletter 19:12–14

    Google Scholar 

  56. 56.

    Derby B, Reis N (2003) Inkjet printing of highly loaded particulate suspensions. MRS Bull 28:815–818

    Google Scholar 

  57. 57.

    Deubel M, Von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM (2004) Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 3:444–447

    Google Scholar 

  58. 58.

    Deubel M, Wegener M, Linden S, Von Freymann G, John S (2006) 3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing. Optic Lett 31:805–807

    Google Scholar 

  59. 59.

    Dimov, SS, Matthews CW, Glanfield A, Dorrington PA (2006). Roadmapping study in multi-material micro manufacture. In: Proceedings of the Second International Conference on Multi-material Micromanufacture, 4M2006, Grenoble, France, 20–22 September, pp. xi–xxv

  60. 60.

    Doraiswamy A, Jin C, Narayan RJ, Mageswaran P, Mente P, Modi R, Auyeung R, Chrisey DB, Ovsianikov A, Chichkov B (2006) Two photon induced polymerization of organic–inorganic hybrid biomaterials for microstructured medical devices. Acta Biomaterialia 2:267–275

    Google Scholar 

  61. 61.

    Dorj B, Park JH, Kim HW (2012) Robocasting chitosan/nanobioactive glass dual-pore structured scaffolds for bone engineering. Mater Lett 73:119–122

    Google Scholar 

  62. 62.

    Dufaud O, Corbel S (2003) Oxygen diffusion in ceramic suspensions for stereolithography. Chem Eng J 92:55–62

    Google Scholar 

  63. 63.

    Duoss EB, Twardowski M, Lewis JA (2007) Sol–gel Inks for Direct-Write Assembly of Functional Oxides. Adv Mater 19(21):3485–3489

    Google Scholar 

  64. 64.

    Duty C, Jean D, Lackey WJ (2001) Laser chemical vapor deposition: materials, modeling, and process control. Int Mater Rev 46:271–287

    Google Scholar 

  65. 65.

    Ebert J, Özkol E, Zeichner A, Uibel K, Weiss O, Koops U, Telle R, Fischer H (2009) Direct inkjet printing of dental prostheses made of zirconia. J Dent Res 88:673–676

    Google Scholar 

  66. 66.

    Ebert R, Regenfuss P, Hartwig L, Klötzer S, Exner H, (2003). Process assembly for μm-scale SLS, reaction sintering, and CVD. In: 4th International Symposium on Laser Precision Microfabrication. Proceedings of SPI vol. 5063, S.183–188

  67. 67.

    Edinger K (2002) Focused ion beam for direct writing. In: Pique A, Chrisey DB (eds) Direct write technologies for rapid prototyping applications. Academic, New York, pp 347–383

    Google Scholar 

  68. 68.

    Edinger K, Melngailis J, Orloff J (1998) Study of precursor gases for focused ion beam insulator deposition. J Vac Sci Tech B 16:3311–3314

    Google Scholar 

  69. 69.

    Ehrfeld W, Schmidt A (1998) Recent developments in deep X-ray lithography. J Vac Sci Technol B 16:3526–34

    Google Scholar 

  70. 70.

    Evans J, Yang S (2009) Solid freeforming and combinatorial research. Tsinghua Sci Technol 14(S1):94–99

    Google Scholar 

  71. 71.

    Exner H, Horn M, Streek A, Hartwig L, Ebert R (2005) First results in laser micro sintering of ceramic materials. European Congress on Advanced Materials and Processes, Prague

    Google Scholar 

  72. 72.

    Exner H, Horn M, Streek A, Ullmann F, Hartwig L, Regenfuß P, Ebert R (2008). Laser micro sintering: a new method to generate metal and ceramic parts of high resolution with sub-micrometer powder. In: Virtual and physical prototyping, vol 3. Taylor & Francis, New York. pp. 3–11

  73. 73.

    Exner H, Regenfuss P, Hartwig L, Klötzer S, Ebert R (2003). Selective laser micro sintering with a novel process. In: 4th International Symposium on Laser Precision Microfabrication. Proceedings of SPI, vol. 5063, S.145–151.

  74. 74.

    Farrer RA, LaFratta CN, Li L, Praino J, Naughton MJ, Saleh BEA, Teich MC, Fourkas JT (2006) Selective functionalization of 3-D polymer microstructures. J Am Chem Soc 128:1796–1797

    Google Scholar 

  75. 75.

    Fedorovich NE, Oudshroon MH, Geemen D, Hennink WE, Alblas J, Dhert WJA (2009) The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials 30:344–353

    Google Scholar 

  76. 76.

    Formanek F, Takeyasu N, Tanaka T, Chiyoda K, Ishikawa A, Kawata S (2006) Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization. Opt Express 14:800–809

    Google Scholar 

  77. 77.

    Foulon F, Stuke M (1993) Argon-ion laser direct-write Al deposition from trialkylamine alane precursors. Appl Physic A 56:283–289

    Google Scholar 

  78. 78.

    Freymann GV, Ledermann A, Thiel M, Staude I, Essig S, Busch K, Wegener M (2010) Three-dimensional nanostructures for photonics. Adv Funct Mater 20:1038–1052

    Google Scholar 

  79. 79.

    Galajda P, Ormos P (2001) Complex micromachines produced and driven by light. Appl Phys Lett 78:249–251

    Google Scholar 

  80. 80.

    Gaspar J, Bartolo PJ, Duarte FM (2008) Cure and rheological analysis of reinforced resins for stereolithography. Mater Sci Forum 587–588:563–567

    Google Scholar 

  81. 81.

    Gebhardt A (2003) Rapid prototyping. Hanser Gardner Publications, Inc., Cincinnati (originally published in German)

    Google Scholar 

  82. 82.

    Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer, New York

    Google Scholar 

  83. 83.

    Gotzen R, Reinhardt A (2008) High volume production by RM: challenges and solutions for small parts and MEMS. International conference on additive technologies. Ptuj, Slovenia

    Google Scholar 

  84. 84.

    Greulich M, Greul M, Pintat T (1995) Fast, functional prototypes via multiphase jet solidification. Rapid Prototyping J 1:20–25

    Google Scholar 

  85. 85.

    Grida I, Evans JRG (2003) Extrusion freeforming of ceramics through fine nozzles. J Eur Ceram Soc 23:629–635

    Google Scholar 

  86. 86.

    Guo R, Li Z, Jiang Z, Yuan D, Huang W, Xia A (2005) Log-pile photonic crystal fabricated by two-photon photopolymerization. J Opt A: Pure Appl Opt 7:396–699

    Google Scholar 

  87. 87.

    Guo R, Xiao S, Zhai X, Li J, Xia A, Huang W (2006) Micro lens fabrication by means of femtosecond two photon polymerization. Opt Express 14:810–816

    Google Scholar 

  88. 88.

    Ha YM, Park IB, Kim HC, Lee SH (2010) Three-dimensional microstructure using partitioned cross-sections in projection microstereolithography. Int J Precis Eng Manuf 11:335–340

    Google Scholar 

  89. 89.

    Hadipoespito G, Yang Y, Choi H, Ning G, Li X, (2003). Digital micromirror device based microstereolithography for micro structures of transparent photopolymer and nanocomposites. In: Proceedings of the 14th Solid Freeform Fabrication Symposium, Austin, TX. pp. 13–24

  90. 90.

    Haferkamp H, Ostendorf A, Becker H, Czerner S, Stippler P (2004) Combination of Yb:YAG-disc laser and roll-based powder deposition for the micro-laser sintering. J Mater Process Tech 149:623–626

    Google Scholar 

  91. 91.

    Hasegawa T, Nakashima K, Omatsu F, Ikuta K (2008) Multi-directional micro switching valve chip with rotary mechanism. Sensor Actuator Phys 143:390–398

    Google Scholar 

  92. 92.

    Hatashi T (2000). Direct 3D forming using TFT LCD mask. In: Proceedings of the 8th International Conference on Rapid Prototyping, Tokyo, Japan. pp. 172–177

  93. 93.

    Heller C, Schwentenwein M, Russmueller G, Varga F, Stampfl J, Liska R (2009) Vinyl esters: low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing. J Polymer Sci Polymer Chem 47:6941–6954

    Google Scholar 

  94. 94.

    Hill RT, Lyon JL, Allen R, Stevenson KJ, Shear JB (2005) Aqueous microfabrication of bioelectronic architectures. J Am Chem Soc 127:10707–10711

    Google Scholar 

  95. 95.

    Hoffmann P, Melngailis J, Michler J (2000). Focused ion beam induced deposition of gold and rhodium. In: Proceedings of the Materials Research Society Symposium, vol. 624. pp. 171–175

  96. 96.

    Hon KKB, Li L, Hutchings IM (2008) Direct writing technology—advances and developments. CIRP Ann Manuf Technol 57:601–620

    Google Scholar 

  97. 97.

    Huang YM, Jiang CP (2003) Numerical analysis of mask type stereolithography process using dynamic finite element method. Int J Adv Manuf Technol 21:649–655

    Google Scholar 

  98. 98.

    Huang YM, Jeng JY, Jiang, CP, Wang JC (2001). Computer supported force analysis and layer imagine for masked rapid prototyping system. In: Proceedings of the 6th International Conference on Computer Supported Cooperative Work in Design, Ontario, Canada. pp. 562–567

  99. 99.

    Hung-Jen Y, Ching-Shiow T, Shan-Hui H, Ching-Lin T (2009) Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen. Biomed Microdevices 11:615–624

    Google Scholar 

  100. 100.

    Igaki J, Kometani R, Nakamatsu K, Kanda K, Haruyama Y, Ochiai Y (2006) Three-dimensional rotor fabrication by focused-ion-beam chemical-vapor deposition. Microelectron Eng 83:1221–1226

    Google Scholar 

  101. 101.

    Ikuta K, Hasegawa T, Adachi T (2001). The optimized SMA micropump chip applicable to liquids and gases. In: Thansducers’01 Eurosensors XV Workshop, Munich, Germany

  102. 102.

    Ikuta K, Hasegawa T, Adachi T, Maruo S (2000). Fluid drive chips containing multiple pumps and switching valves for biochemical IC family. In: 13th IEEE International Conference on Microelectro Mechanical Systems (MEMS 2000), Miyazaki, Japan. pp. 739–744

  103. 103.

    Ikuta K, Hirowatari K (1993). Real three-dimensional microfabrication using stereolithography and metal molding. In: Proceedings of the IEEE international Workshop on Microelectromechanical Systems (MEMS ‘93), Fort Lauderdale. pp. 42–47

  104. 104.

    Ikuta K, Maruo S, Kojoma S (1993). New microstereo lithography for freely movable 3D microstructure. In: Proceedings of the IEEE international Workshop on Microelectromechanical Systems (MEMS ‘93), Fort Lauderdale. pp. 290–295

  105. 105.

    Ikuta K, Ogata T, Tsubio M, Kojima S, (1996). Development of mass productive microstereolithography. In: Proceedings of the IEEE international Workshop on Microelectromechanical Systems (MEMS), San Diego. pp. 301–305

  106. 106.

    Ikuta K, Sasaki Y, Maegawa H, Maruo S, (2002). Microultrasonic homogenizer chip made by hybrid microstereolithography. In: Symposium on Micrototal Analysis Systems (MicroTAS’02) Conference. Kluwer, Norwell.

  107. 107.

    Jafari MA, Han W, Mohammadi F (2000) A novel system for fused deposition of advanced multiple ceramics. Rapid Prototyping J 6:161–175

    Google Scholar 

  108. 108.

    Jayasinghe SN (2007) Bio-electros prays: The development of a promising tool for regenerative and therapeutic medicine. Biotechnol J 2:934–937

    Google Scholar 

  109. 109.

    Jiang XS, Qi LH, Luo J, Huang H, Zhou JM (2010) Research on accurate droplet generation for micro-droplet deposition manufacture. Int J Adv Manuf Technol 49:535–541

    Google Scholar 

  110. 110.

    Jiguet S, Bertsch A, Renaud P (2002). Microstereolithography and ceramic composite three-dimensional parts. In: Proceedings of the Shaping II conference, Gent, Belgium

  111. 111.

    Johander P, Eberhard W, Necula D, Haasl S, Jung E (2007). Three-dimensional electronics packaging and interconnection 3D PACK. 4M Cross Divisional Report. Cardiff University, Cardiff. pp. 8–22.

  112. 112.

    Johander P, Haasl S, Persson K, Harrysson U (2007). Layer manufacturing as a generic tool for microsystem integration. In: 4M2007 Conference Proceedings, Borovets, Bulgaria.

  113. 113.

    Johander P, Harrysson U, Kaufmann U, Ritzhaupt-Kleissl HJ, (2005). Direct manufacture of ceramic micro components with layered manufacturing methods. In: 4M Conference, Karlsruhe, Germany

  114. 114.

    Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A (2003) Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 23:611–620

    Google Scholar 

  115. 115.

    Karam RM, Casler RJ (2003). A new 3D, direct-write, sub-micron microfabrication process that achieves true optical, mechatronic and packaging integration on glass-ceramic substrates. White paper, Invenios, Inc

  116. 116.

    Kawamoto H (2007). Electronic circuit printing, 3D printing and film formation utilizing electrostatic inkjet technology. In: International Conference on Digital Printing Technologies and Digital Fabrication, Anchorage, Alaska. pp. 961–964

  117. 117.

    Kawata S, Sun HB, Tanaka T, Takada K (2001) Finer features for functional microdevices. Nature 412:697–698

    Google Scholar 

  118. 118.

    Khalil S, Nam J, Sun W (2005) Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyping J 11:9–17

    Google Scholar 

  119. 119.

    Kim CS, Ahn SH, Jang DY (2012) Review: developments in micro/nanoscale fabrication by focused ion beams. Vacuum 86:1014–1035

    Google Scholar 

  120. 120.

    Kim DS, Lee IH, Kwon TH, Cho DW (2004) A barrier embedded Kenics micromixer. J Micromech Microeng 14:1294–1301

    Google Scholar 

  121. 121.

    Klein F, Richter B, Striebel T, Franz CM, Freymann GV, Wegener M, Bastmeyer M (2011) Two-component polymer scaffolds for controlled three-dimensional cell culture. Adv Mater 23:1341–1345

    Google Scholar 

  122. 122.

    Klein S, Barsella A, Leblond H, Bulou H, Fort A, Andraud C, Lemercier G, Mulatier JC, Dorkenoo K (2005) One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption. Appl Phys Lett 86:211118(1)–211118(3)

    Google Scholar 

  123. 123.

    Klosterman DA, Chartoff RP, Osborne NR, Graves GA, Lightman A, Han GW, Bezeredi A, Rodrigues S, Pak S, Kalmanovich G, Dodin L, Tu S (1998) Direct fabrication of ceramics, CMCs by rapid prototyping. Am Ceram Soc Bull 77:69–74

    Google Scholar 

  124. 124.

    Ko SH, Chung J, Hotz N, Nam KH, Grigoropoulos CP (2010) Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication. J Micromech Microeng 20:125010 (7 pp)

    Google Scholar 

  125. 125.

    Ko SH, Pan H, Grigoropoulos CP, Luscombe CK, Fréchet J, Poulikakos D (2007) All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18:345202

    Google Scholar 

  126. 126.

    Kobayashi K, Ikuta K (2005). Development of free surface microstereolithography with ultra high resolution to fabricate hybrid 3-D microdevices. In: IEEE International Symposium on Micro-nano Mechatronics and Human Schience

  127. 127.

    Kometani R, Funabiki R, Hoshino T, Kanda K, Haruyama Y, Kaito T (2006) Cell wall cutting tool and nano-net fabrication by FIB-CVD for subcellular operations and analysis. Microelectron Eng 83:1642–1645

    Google Scholar 

  128. 128.

    Kometani R, Hoshino T, Kondo K, Kanda K, Haruyama Y, Kaito J (2005) Performance of nanomanipulator fabricated on glass capillary by focused ion-beam chemical vapor deposition. J Vac Sci Technol B 23:298–301

    Google Scholar 

  129. 129.

    Kometani R, Morita T, Watanabe K, Hoshino T, Kondo K, Kanda K (2004) Nanomanipulator and actuator fabrication on glass capillary by focused-ion beam-chemical vapor deposition. J Vac Sci Technol B 22:257–263

    Google Scholar 

  130. 130.

    Lai WH, Chen CC (2005) Effect of oxidation on the breakup and monosized droplet generation of the molten metal jet. AtomizSpr 15:81–102

    MathSciNet  Google Scholar 

  131. 131.

    Lam CXF, Mo XM, Teoh SH, Hutmacher DW (2002) Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C 20:49–56

    Google Scholar 

  132. 132.

    Lan PX, Lee JW, Seol YJ, Cho DW (2009) Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci Mater Med 20:271–279

    Google Scholar 

  133. 133.

    Landers R, Hübner U, Schmelzeisen R, Mülhaupt R (2002) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23:4437–4447

    Google Scholar 

  134. 134.

    Landers R, Mühlhaupt R (2000) Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromol Mater Eng 282:17–21

    Google Scholar 

  135. 135.

    Lanzetta M, Sachs E (2003) Improved surface finish in 3D printing using bimodal powder distribution. Rapid Prototyping J 9:157–166

    Google Scholar 

  136. 136.

    Lass N, Tropmann A, Ernst A, Zengerle R, Koltay P (2011). Rapid prototyping of 3d microstructures by direct printing of liquid metal at temperatures up to 500°C using the starjet technology. In: 16th Solid-State Sensors, Actuators and Microsystems International Conference (TRANSDUCERS), Beijing, China. pp. 1452–1455

  137. 137.

    Ledermann A, Wegener M, Von Freymann G (2010) Rhombicuboctahedral three-dimensional photonic quasicrystals. Adv Mater 22:2363–2366

    Google Scholar 

  138. 138.

    Lee JW, Lan PX, Kim B, Lim G, Cho DW (2008) Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology. J Biomed Mater Res B Appl Biomater 87:1–9

    Google Scholar 

  139. 139.

    Lee JW, Lee IH, Cho DW (2006) Development of micro-stereolithography technology using metal powder. Microelect Eng 83:1253–1256

    Google Scholar 

  140. 140.

    Lee KJ, Jun BH, Kim TH, Joung J (2006) Direct synthesis and inkjetting of silver nanocrystals toward printed electronics. Nanotechnology 17:2424–2428

    Google Scholar 

  141. 141.

    Lee Y, Lu X, Hao Y, Yang SF, Ubic R, Evans JRG, Parini CG (2007) Rapid prototyping of ceramic millimeterwave metamaterials: Simulations and experiments. Microw Opt Technol Lett 49(9):2090–2093

    Google Scholar 

  142. 142.

    Lee Y, Lu, X, Hao Y, Yang SF, Ubic R, Evans JRG, Parini CG (2007) Directive millimetre-wave antenna based on freeformed woodpile EBG structure. Electron Lett 43(4):195–196

    Google Scholar 

  143. 143.

    Lee Y, Lu, X, Hao Y, Yang SF, Evans JRG, Parini CG (2008) Directive millimetrewave antennas using freeformed ceramic metamaterials in planar and cylindrical forms. In: IEEE antennas and propagation society international symposium, vol. 1–9, San Diego, CA, 5–11 Jul 2008. pp. 2242–2245

  144. 144.

    Lee KS, Kim RH, Yang DY, Park SH (2008) Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog Polym Sci 33:631–681

    Google Scholar 

  145. 145.

    Lee Y, Lu X, Hao Y, Yang SF, Evans JRG, Parini CG (2009) Low-profile directive millimeter-wave antennas using free-formed three-dimensional (3-D) electromagnetic bandgap structures. IEEE Trans Antenn Propag 57(10:2893–2903

    Google Scholar 

  146. 146.

    Lee Y, Lu X, Hao Y, Yang SF, Evans JRG, Parini CG (2010) Narrow-beam azimuthally omni-directional millimetre-wave antenna using freeformed cylindrical woodpile cavity. IEE Proc Microwaves Antenn Propag 4(10):1491–1499

    Google Scholar 

  147. 147.

    Lehmann O, Stuke M (1994) Three-dimensional laser direct writing of electrically conducting and isolating microstructures. Mater Lett 21:131–135

    Google Scholar 

  148. 148.

    Lehua Q, Xiaoshan J, Jun L, Xianghui H, Hejun L (2010) Dominant factors of metal jet breakup in micro droplet deposition manufacturing technique. Chin J Aeronaut 23:495–500

    Google Scholar 

  149. 149.

    Lejeune M, Chartier T, Dossou-Yovo C, Noguera R (2009) Ink-jet printing of ceramic micro-pillar arrays. J Eur Ceram Soc 29:905–911

    Google Scholar 

  150. 150.

    Li R, Ashgriz N, Chandra S (2008) Droplet generation from pulsed micro jets. Exp Therm Fluid Sci 32:1679–1686

    Google Scholar 

  151. 151.

    Lim TW, Son Y, Yang DY, Kong HJ, Lee KS (2010) Selective ablation-assisted two-photon stereolithography for effective nano- and microfabrication. Appl Phys A 103:1111–1116

    Google Scholar 

  152. 152.

    Liu Q, Orme M (2001) High precision solder droplet printing technology and the state-of-the art. J Mater Process Technol 115:271–283

    Google Scholar 

  153. 153.

    Liu Q, Orme M (2001) On precision droplet-based net-form manufacturing technology. Proc IME B J Eng Manufac 215:1333–1355

    Google Scholar 

  154. 154.

    Liu VA, Bhatia SN (2002) Three-dimensional patterning of hydrogels containing living cells. Biomed Microdevices 4:257–266

    Google Scholar 

  155. 155.

    Longo DM, Hull R (2000). Direct focused ion beam writing of printheads for pattern transfer utilizing microcontact printing. In: Proceedings of the Materials Research Society Symposium, vol. 624. pp. 157–160

  156. 156.

    Lorenz AM, Sachs EM, Allen SM (2004). Techniques for infiltration of a powder metal skeleton by a similar alloy with melting point depressed. U.S. Patent 6,719,948. US Patent and Trademark Office, Massachusetts Institute of Technology.

  157. 157.

    Lu K, Reynolds WT (2008) 3DP process for fine mesh structure printing. Powder Technol 187:11–18

    Google Scholar 

  158. 158.

    Lu S, Anseth KS (1999) Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release. J Contr Release 57:291–300

    Google Scholar 

  159. 159.

    Lu X, Yang S, Evans JRG (2007) Dose uniformity of fine powders in ultrasonic microfeeding. Powder Techn 175:63–72

    Google Scholar 

  160. 160.

    Lu X, Lee Y, Yang SF, Hao Y, Ubic R, Evans JRG, Parini CG (2008) Fabrication of electromagnetic crystals by extrusion freeforming. Metamaterials 2(1):36–44

    Google Scholar 

  161. 161.

    Lu X, Lee Y, Yang SF, Hao Y, Ubic R, Evans JRG, Parini CG (2009) Fabrication of millimeter-wave electromagnetic bandgap crystals using microwave dielectric powders. J Am Ceram Soc 92(2):371–378

    Google Scholar 

  162. 162.

    Lu X, Lee Y, Yang SF, Hao Y, Evans JRG, Parini CG (2009) Fine lattice structures fabricated by extrusion freeforming: process variables. J Mater Process Tech 209(10):4654–4661

    Google Scholar 

  163. 163.

    Lu X, Lee Y, Yang SF, Hao Y, Evans JRG, Parini CG (2009) Extrusion freeforming of millimeter wave electromagnetic bandgap (EBG) structures. Rapid Prototyping Journal 15(1):42–51

    Google Scholar 

  164. 164.

    Lu X, Lee Y, Yang SF, Hao Y, Evans JRG, Parini CG (2010) Solvent-based paste extrusion solid freeforming. J Eur Ceram Soc 30(1):1–10

    Google Scholar 

  165. 165.

    Lu XS, Chen LF, Amini N, Yang SF, Evans JRG, Guo ZX (2012) Novel methods to fabricate macroporous 3D carbon scaffolds and ordered surface mesopores on carbon filaments. J Porous Mat 19(5):529–536

    Google Scholar 

  166. 166.

    Madden JD, Hunter IW (1996) Three-dimensional microfabrication by localized electrochemical deposition. J Microelectromech Syst 5:24–32

    Google Scholar 

  167. 167.

    Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization, 2nd edn. CRC Press, New York

    Google Scholar 

  168. 168.

    Mariani M, Rosatini F, Vozzi G, Previti A, Ahluwalia A (2006) Characterization of tissue-engineered scaffolds microfabricated with PAM. Tissue Eng 12:547–557

    Google Scholar 

  169. 169.

    Maruo S, Ikuta K, Korogi H (2003) Submicron manipulation tools driven by light in a liquid. Appl Phys Lett 82:133–135

    Google Scholar 

  170. 170.

    Maruo S, Kawata S (1998) Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication. IEEE ASME J Microelectromech Syst 7:411–415

    Google Scholar 

  171. 171.

    Masuzawa T (2000) State of the art of micro-machining. CIRP Ann Manuf Technol 49:473–488

    Google Scholar 

  172. 172.

    Matsui S (2007) Focused-ion-beam deposition for 3-D nanostructure fabrication. Nucl Instrum Meth B 257:758–764

    Google Scholar 

  173. 173.

    Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130

    Google Scholar 

  174. 174.

    Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Progr Polymer Sci 37:1079–1104

    Google Scholar 

  175. 175.

    Michna S, Wu W, Lewis JA (2005) Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials 26:5632–5639

    Google Scholar 

  176. 176.

    MicroFab Inc. (2012). Available from www.MicroFab.com

  177. 177.

    microTEC (2012). Products and applications, microTEC Gesellschaft für Mikrotechnologie mbH. Available from www.microtec-d.com

  178. 178.

    Mihailov S, Lazare S (1993) Fabrication of refractive microlens arrays by excimer laser ablation of amorphous teflon. Appl Optic 32:6211–6218

    Google Scholar 

  179. 179.

    Miranda P, Pajares A, Saiz E, Tomsia AP, Guiberteau F (2008) Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. J Biomed Mater Res A 85A:218–227

    Google Scholar 

  180. 180.

    Mironov V, Prestwich G, Forgacs G (2007) Bioprinting living structures. J Mater Chem 17:2054–2060

    Google Scholar 

  181. 181.

    Mizeikis V, Juodkazis S, Tarozaite R, Juodkazyte J, Juodkazis K, Misawa H (2007) Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region. Opt Express 15:8454–8464

    Google Scholar 

  182. 182.

    Monneret S, Loubere V, Corbel S (1999) Microstereolithography using dynamic mask generator and a non-coherent visible light source. Proc SPIE 3680:553–561

    Google Scholar 

  183. 183.

    Monneret S, Provin C, Gall HL, Corbel S (2002) Microfabrication of freedom and articulated alumina-based components. Microsyst Technol 8:368–374

    Google Scholar 

  184. 184.

    Morgan JC (1998) Focused ion beam mask repair. Solid State Tech 41:61–67

    Google Scholar 

  185. 185.

    Nagel DJ (2002) Technologies for micrometer and nanometer pattern and material transfer. In: Pique A, Chrisey DB (eds) Direct write technologies for rapid prototyping applications. Academic, New York, pp 557–701

    Google Scholar 

  186. 186.

    Nakamoto T, Yamaguchi K, (1996). Consideration on the producing of high aspect ratio micro parts using UV sensitive photopolymer. In: Proceedings of 7th International Symposium on Micro Machine and Human Science, pp. 53–58.

  187. 187.

    Narahara H, Tanaka F, Kishinami T, Igarashi S, Saito K (1999) Reaction heat effects on initial linear shrinkage and deformation in stereolithography. Rapid Prototyping J 5:120–128

    Google Scholar 

  188. 188.

    Neumann J, Wieking KS, Kip D (1999) Direct laser writing of surface reliefs in dry self-developing photopolymer films. Appl Opt 38:5418–5423

    Google Scholar 

  189. 189.

    Noguera R, Lejeune M, Chartier T (2005) 3D fine scale ceramic components formed by ink-jet prototyping process. J Eur Ceram Soc 25:2055–2059

    Google Scholar 

  190. 190.

    Park IB, Ha YM, Lee SH (2010) Cross-section segmentation for improving the shape accuracy of microstructure array in projection microstereolithography. Int J Adv Manuf Technol 46:151–161

    Google Scholar 

  191. 191.

    Park SH, Lim TW, Yang DY, Kim RH, Lee KS (2006) Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique. Appl Phys Lett 89:173131–173133

    Google Scholar 

  192. 192.

    Parker ST, Domachuk P, Amsden J, Bressner J, Lewis JA, Kaplan DL, Omenetto FG (2009) Biocompatible Silk Printed Optical Waveguides. Adv Mater 21:2411–2415

    Google Scholar 

  193. 193.

    Petsch T, Regenfuß P, Ebert R, Hartwig L, Klötzer S, Brabant TH, Exner H (2004). Industrial laser micro sintering. In: Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics, Erlangen, Germany. pp. 413–424

  194. 194.

    Priest JW, Smith C, DuBois P (1997). Liquid metal jetting for printing metal parts. In: Solid Freeform Fabrication Symposium, Texas, USA

  195. 195.

    Provin C, Monneret S (2002) Complex ceramic-polymer composite microparts made by microstereolithography. IEEE Trans Electron Packag Manuf 25:59–63

    Google Scholar 

  196. 196.

    Provin C, Monneret S, Gall HL, Corbel S (2003) Three-dimensional ceramic microcomponents made using microstereolithography. Adv Mater 15:994–997

    Google Scholar 

  197. 197.

    Qin Y (2010) Micro-manufacturing engineering and technology. Elsevier, Oxford

    Google Scholar 

  198. 198.

    Qin Y, Brockett A, Ma Y, Razali A, Zhao J, Harrison C, Pan W, Dai X, Loziak D (2010) Micro manufacturing: research, technology outcomes and development issues. Int J Adv Manuf Technol 47:821–837

    Google Scholar 

  199. 199.

    Quinn DJ, Spearing SM, Ashby MF, Fleck NA (2006) A systematic approach to process selection in MEMS. J Microelectromech Syst 15:1039–1050

    Google Scholar 

  200. 200.

    Regenfuss P, Ebert R, Exner H (2007) Laser micro sintering: a versatile instrument for the generation of microparts. Laser Technik Journal 4:26–31

    Google Scholar 

  201. 201.

    Regenfuss P, Hartwig L, Klötzer S, Ebert R, Brabant TH, Petsch T, Exner H (2005) Industrial freeform generation of micro tools by laser micro sintering. Rapid Prototyping J 11:18–25

    Google Scholar 

  202. 202.

    Regenfuss P, Hartwig L, Klötzer S, Ebert R, Exner H (2003). Microparts by a novel modification of selective laser sintering. In: Rapid Prototyping and Manufacturing Conference, Chicago, USA

  203. 203.

    Regenfuss P, Streek A, Hartwig L, Klötzer S, Brabant TH, Horn M, Ebert R, Exner H (2007) Principles of laser micro sintering. Rapid Prototyping J 13:204–212

    Google Scholar 

  204. 204.

    Reinhardt C, Passinger S, Chichkov B, Marquart C, Radko I, Bozhevolnyi S (2006) Laser-fabricated dielectric optical components for surface plasmon polaritons. Opt Lett 31:1307–1309

    Google Scholar 

  205. 205.

    Reyntjens S, Puers R (2001) A review of focused ion beam applications in microsystem technology. J Micromech Microeng 11:287–300

    Google Scholar 

  206. 206.

    Sachs EM, Cima M.J, Caradonna MA, (2003). Jetting layers of powder and the formation of fine powder beds thereby. US Patent 6,596,224. US Patent and Trademark Office, Massachusetts Institute of Technology

  207. 207.

    Sachs EM, Haggerty JS, Cima MJ, (1993). Three-dimensional printing techniques. US Patent 5,204,055. US Patent and Trademark Office, Massachusetts Institute of Technology

  208. 208.

    Scheffer P, Bertsch A, Corbel S, Jejequel JY, Andre JC (1997) Industrial photochemistry XXIV. Relations between light flux and polymerized depth in laser stereolithography. J Photochem Photobiol Chem 107:283–290

    Google Scholar 

  209. 209.

    Schlie S, Ngezahayo A, Ovsianikov A, Fabian T, Kolb HA, Haferkamp H, Chichkov BN (2007) Three-dimensional cell growth on structures fabricated from ORMOCER by two-photon polymerization technique. J Biomater Appl 22:275–287

    Google Scholar 

  210. 210.

    Schiele NR, Koppes RA, Corr DT, Ellison KS, Thompson DM, Ligon LA, Lippert TKM, Chrisey DB (2009) Laser direct writing of combinatorial libraries of idealized cellular constructs: Biomedical applications. Appl Surf Sci 255:5444–5447

    Google Scholar 

  211. 211.

    Schuck H, Bauerfeld F, Sauer D, Harzic RL, Velten T, Riemann I, König K, (2007). Rapid prototyping of 3D micro- nanostructures to explore cell behavior. In: 4M Conference Proceedings, Ingbert, Germany. pp. 16–23

  212. 212.

    Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJA, Malda J (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3:021001

    Google Scholar 

  213. 213.

    Schuster M, Turecek C, Weigel G, Saf R, Stampfl J, Varga F, Liska R (2009) Gelatin-based photopolymers for bone replacement materials. J Polymer Sci Polymer Chem 47:7078–7089

    Google Scholar 

  214. 214.

    Seet KK, Mizeikis V, Matsuo S, Juodkazis S, Misawa H (2005) Three-dimensional spiral—architecture photonic crystals obtained by direct laser writing. Adv Mater 17:541–545

    Google Scholar 

  215. 215.

    Seitz H, Rieder W, Leukers B, Tille C (2005) Three dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res 74B:782–788

    Google Scholar 

  216. 216.

    Serbin J, Chichkov BN, Houbertz R (2003) Three-dimensional nanostructuring of hybrid materials by two-photon polymerization. Proc SPIE 5222:171–177

    Google Scholar 

  217. 217.

    Shepherd JNH, Parker ST, Shepherd RF, Gillette MU, Lewis JA, Nuzzo RG (2011) 3D Microperiodic Hydrogel Scaffolds for Robust Neuronal Cultures. Adv Funct Mater 21:47–54

  218. 218.

    Shoji S, Smith N, Kawata S (1999) Photofabrication of a photonic crystal using interference of a UV laser. Proc SPIE 3740:541–544

    Google Scholar 

  219. 219.

    Shoji S, Sun HB, Kawata S (2003) Photofabrication of wood-pile three-dimensional photonic crystals using four-beam interference. Appl Phys Lett 83:608–610

    Google Scholar 

  220. 220.

    Simon JL, Michna S, Lewis JA, Rekow ED, Thompson VP, Smay JE, Yampolsky A, Parsons JR, Ricci JL (2007) In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J Biomed Mater Res A 83A:747–758

    Google Scholar 

  221. 221.

    Smay JE, Gratson GM, Shepherd RF, Cesarano J, Lewis JA (2002) Directed colloidal assembly of 3D periodic structures. Adv Mater 14:1279–1283

    Google Scholar 

  222. 222.

    Stampfl J, Fouad H, Seidler S, Liska R, Schwager F, Woesz A, Fratzl P (2004) Fabrication and moulding of cellular materials by rapid prototyping. Int J Mater Prod Tech 21:285–96

    Google Scholar 

  223. 223.

    Staude I, Von Freymann G, Essig S, Busch K, Wegener M (2011) Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion. Optic Lett 36:67–69

    Google Scholar 

  224. 224.

    Straub M, Nguyen LH, Fazlic A, Gu M (2004) Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon micro-stereo-lithography. Opt Mater 27:359–364

    Google Scholar 

  225. 225.

    Straub M, Ventura M, Gu M (2003) Multiple higher-order stop gaps in infrared polymer photonic crystals. Phys Rev Lett 91:043901

    Google Scholar 

  226. 226.

    Streek A, Regenfus P, Ullmann F, Hartwig L, Ebert R, Exner Hm (2006). Processing of silicon carbide by laser micro sintering. In: The Proceedings of the 17th Annual SFF Symposium. pp. 349–385.

  227. 227.

    Stuke M, Mueller K, Mueller T, Hagedorn R, Jaeger M, Fuhr G (2005) Laser- direct-write creation of three-dimensional orest microcages for contact-free trapping, handling and transfer of small polarizable neutral objects in solution. Appl Physic A 81:915–922

    Google Scholar 

  228. 228.

    Subramanian K, Vail N, Barlow J, Marcus H (1995) Selective laser sintering of alumina with polymer binders. Rapid Prototyping J 1:24–35

    Google Scholar 

  229. 229.

    Subramanian V, Fréchet JMJ, Chang PC, Huang DC, Lee JB, Molesa SE, Murphy AR, Redinger DR, Volkman SK (2005) Progress toward development of all-printed RFID tags: materials, processes, and devices. Proc IEEE 93:1330–1338

    Google Scholar 

  230. 230.

    Sun C, Fang N, Wu DM, Zhang X (2005) Projection micro-stereolithography using digtal micro-mirror dynamic mask. Sensor Actuator Phys l21:113–120

    Google Scholar 

  231. 231.

    Sun H, Kawakami T, Xu Y, Ye J, Matuso S, Misawa H, Miwa M, Kaneko R (2000) Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption. Opt Lett 25:1110–1112

    Google Scholar 

  232. 232.

    Sun HB, Matsuo S, Misawa H (1999) Three-dimensional photonic crystal structures achieved with two-photon absorption photopolymerization of resin. Appl Phys Lett 74:786–788

    Google Scholar 

  233. 233.

    Sun L, Parker ST, Syoji D, Wang X, Lewis JA, Kaplan DL (2012) Direct-write assembly of 3D silk/hydroxyapatite scaffolds for bone co-cultures. Advanced Healthcare Materials 1:729–735

    Google Scholar 

  234. 234.

    Suzumori K, Koga A, Haneda R (1994) Micro fabrication of integrated FMAs using stereolithography. IEEE MEMS 114:136–141

    Google Scholar 

  235. 235.

    Takagi T, Nakajima N (1993). Photoforming applied to fine machining. In: Proceedings of 4th International Symposium on Micro Machine and Human Science (MHS ‘93). pp. 173–178.

  236. 236.

    Takagi, T., Nakajima, N., 1994. Architecture combination by micro photoforming process. In: 7th IEEE Workshop on Micro Electro Mechanical Systems (MEMS ‘94), Oiso, Japan. pp. 211–216

  237. 237.

    Tay B, Edirisinghe MJ (2001) Investigation of some phenomena occurring during continuous ink-jet printing of ceramics. J Mater Res 16:373–384

    Google Scholar 

  238. 238.

    Thian SCH, Tang Y, Fuh JYH, Wong YS, Lu L, Loh HT (2006) Micro-rapid-prototyping via multi-layered photo-lithography. Int J Adv Manuf Technol 29:1026–1032

    Google Scholar 

  239. 239.

    Thiel M, Rill MS, Freymann GV, Wegener M (2009) Three-dimensional bi-chiral photonic crystals. Adv Mater 21:4680–4682

    Google Scholar 

  240. 240.

    Thienpont H, Baukens V, Ottevaere H, Volckaerts B, Tuteleers P, Vynck P, Vervaeke M, Debaes C, Verschaffelt G, Hermanne A, Veretennicoff I (2001) Free-space micro-optical modules: the missing link for photonic interconnects to silicon chips. Opto-Electronics Review 9:238–247

    Google Scholar 

  241. 241.

    Tirella A, Vozzi G, Ahluwalia A (2008) Biomimicry of PAM Microfabricated Hydrogel Scaffold. Springfield, Soc Imaging Science & Technology

  242. 242.

    Tirella A, Orsini A, Vozzi G, Ahluwalia A (2009) A phase diagram for microfabrication of geometrically controlled hydrogel scaffolds. Biofabrication, 1

  243. 243.

    Tirella A, De Maria C, Criscenti G, Vozzi G, Ahluwalia A (2012) The PAM(2) system: a multilevel approach for fabrication of complex three-dimensional microstructures. Rapid Prototyping J 18:299–307

    Google Scholar 

  244. 244.

    Tropmann A, Lass N, Paust N, Metz T, Ziegler C, Zengerle R, Koltay P (2011) Pneumatic dispensing of nano- to picoliter droplets of liquid metal with the StarJet method for rapid prototyping of metal microstructures. Microfluid Nanofluid 12:75–84

    Google Scholar 

  245. 245.

    Tse AL, Hesketh PJ, Rosen DW (2001). Stereolithography on silicon for microfluidics and microsensor packaging. In: 4th International Workshop on High Aspect Ratio Micro Structure Technology (HARMST ‘01), Baden-Baden, Germany

  246. 246.

    Tse AL, Hesketh PJ, Rosen DW, Gole JL (2003) Stereolithography on silicon for microfluidics and microsensor packaging. Microsyst Technol 9:319–323

    Google Scholar 

  247. 247.

    Ullett JS, Benson-Tolle T, Schultz JW, Chartoff RP (1999) Thermal-expansion and fracture toughness properties of parts made from liquid crystal stereolithography resins. Mater Des 20:91–97

    Google Scholar 

  248. 248.

    Ullett JS, Schultz JW, Chartoff RP (2000) Novel liquid crystal resins for stereolithography. Rapid Prototyping J 6:8–17

    Google Scholar 

  249. 249.

    Varadan VK, Jiang S, Varadan VV (2001) Microstereolithography and other fabrication techniques for 3D MEMS. Wiley, New York

    Google Scholar 

  250. 250.

    Vorndran E, Klammert U, Klarner M, Grover LM, Barralet JE, Gbureck U (2009) 3D printing of β-tricalcium phosphate ceramics. Dent Mater 25:e18–e19

    Google Scholar 

  251. 251.

    Vozzi G, Ahluwalia A (2007) Microfabrication for tissue engineering: rethinking the cells-on-a scaffold approach. J Mater Chem 17:1248–1254

    Google Scholar 

  252. 252.

    Vozzi G, Flaim CJ, Bianchi F, Ahluwalia A, Bhatia S (2002) Microfabricated PLGA scaffolds: a comparative study for application to tissue engineering. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 20:43–47

    Google Scholar 

  253. 253.

    Vozzi G, Previti A, Ciaravella G, Ahluwalia A (2004) Microfabricated fractal branching networks. J Biomed Mater Res A 71A:326–333

    Google Scholar 

  254. 254.

    Walters P, Ieropoulos I, McGoran D (2011). Digital fabrication of a novel bio-actuator for bio-robotic art and design. In: International Conference on Digital Printing Technologies and Digital Fabrication 2011, Minneapolis, MN. pp. 496–499

  255. 255.

    Wang F, Shor L, Darling A, Khalil S, Güceri S, Lau A (2004) Precision extruding deposition and characterization of cellular poly-epsilon-caprolactone tissue scaffolds. Rapid Prototyping J 10:42–49

    Google Scholar 

  256. 256.

    Wanke MC, Lehmann O, Muller K, Wen Q, Stuke M (1997) Laser rapid prototyping of photonic band-gap microstructures. Science 275:1284–1286

    Google Scholar 

  257. 257.

    William K, Maxwell J, Larsson K, Boman M (1999). Freeform fabrication of functional microsolenoids, electromagnets and helical springs using high pressure laser chemical vapour deposition. In: Proceedings of the 12th IEEE International Conference on Micro Electro Mechanical Systems (MEMS ‘99). pp. 232–237.

  258. 258.

    Woodfield TBF, Malda J, de Wijn J, Péters F, Riesle J, Van Blitterswijk CA (2004) Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25:4149–4161

    Google Scholar 

  259. 259.

    Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–75

    Google Scholar 

  260. 260.

    Xiong Z, Yan YN, Zhang RJ, Sun L (2001) Fabrication of porous poly(L-lactic acid) scaffolds for bone tissue engineering via precise extrusion. Scr Mater 45:773–779

    Google Scholar 

  261. 261.

    Xu G, Zhao W, Tang Y, Lu B (2006) Novel stereolithography system for small size objects. Rapid Prototyping J 12:12–17

    Google Scholar 

  262. 262.

    Yamaguchi K (2003) Generation of 3-dimensional microstructure by metal jet. Microsystem Technol 9:215–219

    Google Scholar 

  263. 263.

    Yamaguchi K, Sakai K, Yamanka T, Hirayama T (2000) Generation of three-dimensional micro structure using metal jet. Precision Eng 24:2–8

    Google Scholar 

  264. 264.

    Yang S, Evans JRG (2004) A dry powder jet printer for dispensing and combinatorial research. Powder Techn 142:219–222

    Google Scholar 

  265. 265.

    Yang S, Evans JRG (2007) Metering and dispensing of powder; the quest for new solid freeforming techniques. Powder Techn 178:56–72

    Google Scholar 

  266. 266.

    Yang HY, Yang SF, Chi XP, Evans JRG (2006) Fine ceramic lattices prepared by extrusion freeforming. J Biomed Mater Res B Appl Biomater 79B(1):116–121

    Google Scholar 

  267. 267.

    Yang HY, Yang SF, Chi XP, Evans JRG, Thompson I, Cook RJ, Robinson P (2008) Sintering behaviour of calcium phosphate filaments for use as hard tissue scaffolds. J Eur Ceram Soc 28(1):159–167

    Google Scholar 

  268. 268.

    Yang HY, Thompson I, Yang SF, Chi XP, Evans JRG, Cook RJ, Robinson P (2008) Dissolution characteristics of extrusion freeformed hydroxyapatite-tricalcium phosphate scaffolds. J Mater Sci Mater Med 19(11):3345–3353

    Google Scholar 

  269. 269.

    Yang SF, Yang HY, Chi XP, Evans JRG, Thompson I, Cook RJ, Robinson P (2008c) Rapid prototyping of ceramic lattices for hard tissue scaffolds. Mater Des 29:1802–1809

  270. 270.

    Yang HY, Yang SF, Chi XP, Evans JRG (2010) Mechanical strength of extrusion freeformed calcium phosphate filaments. J Mater Sci Mater Med 21(5):1503–1510

    Google Scholar 

  271. 271.

    Yim P (1996). The role surface oxidation in the break-up of laminar liquid metal jets. Ph.D. thesis, MIT, Cambridge, MA

  272. 272.

    Young RJ, Puretz J (1995) Focused ion beam insulator deposition. J Vac Sci Tech B 13:2576

    Google Scholar 

  273. 273.

    Yu T, Ober CK, Kuebler SM, Zhou W, Marder SR, Perry JW (2003) Chemically amplified positive resists for two photon three-dimensional microfabrication. Adv Mater 15:517–521

    Google Scholar 

  274. 274.

    Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185

    Google Scholar 

  275. 275.

    Zhang X, Jiang XN, Sun C (1998) Micro-stereolithography for MEMS. Micro electro mechanical systems (MEMS). ASME 66:3–9

    Google Scholar 

  276. 276.

    Zhang X, Jiang X, Sun C (1999) Micro-stereolithography of polymeric and ceramic microstructures. Sensor Actuator Phys 77:149–156

    Google Scholar 

  277. 277.

    Zhang YL, Chen QD, Xia H, Sun HB (2010) Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today 5:435–448

    Google Scholar 

  278. 278.

    Zhou C, Chen Y (2012) Additive manufacturing based on optimized mask video projection for improved accuracy and resolution. J Manuf Process 14:107–118

    Google Scholar 

  279. 279.

    Zhuo X, Yongnian Y, Shenguo W, Renji Z, Chao Z (2002) Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr Mater 46:771–776776

    Google Scholar 

  280. 280.

    Zissi S, Bertsch A, Jejequel JY, Corbel S, Lougnot DJ, Andre JC (1996) Stereolithography and microtechniques. Microsys Technol 2:97–102

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Vaezi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vaezi, M., Seitz, H. & Yang, S. A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol 67, 1721–1754 (2013). https://doi.org/10.1007/s00170-012-4605-2

Download citation

Keywords

  • Additive manufacturing (AM)
  • Direct writing (DW)
  • Microelectromechanical systems (MEMS)
  • Rapid micromanufacturing