Skip to main content

A hyperspherical particle swarm optimizer for robust engineering design


This paper presents a novel multi-objective particle swarm optimizer, called hyperspherical particle swarm optimization (HSPSO), which efficiently deals with robust engineering design problems. In contrast to traditional optimization methods which rely on single-point design configurations, the HSPSO method evolves multi-dimensional design surfaces while simultaneously optimizing several potentially conflicting objectives and minimizing product/process variations. The hyperspherical representation is accommodated by incorporating manufacturing tolerances for design variables, and sensitivity analysis is performed to maintain feasibility within the design region. Hyperspherical particles are automatically evaluated, and non-inferior solutions are identified by the Pareto-dominance strategy. To enhance the local search ability of the particle swarm optimization algorithm, a gradient descent algorithm is applied, and fitness evaluation is performed by using a crowding factor, which defines the density of the population along the Pareto front. The performance of the proposed HSPSO algorithm is highlighted by reporting on three robust engineering design problems, which involve a mixture of single objective and multiple conflicting objectives along with integer, discrete and continuous design parameters. Monte Carlo simulations are used to assess the reliability of the obtained results.

This is a preview of subscription content, access via your institution.


  1. 1.

    Arora J (2011) Introduction to optimum design, 3rd edn. Academic, New York

    Google Scholar 

  2. 2.

    Azarm S, Mourelatos ZP (2006) Robust and reliability-based design. J Mech Des 128(4):829–832

    Article  Google Scholar 

  3. 3.

    Cao YJ, Wu QH (1999) A mixed variable evolutionary programming for optimization of mechanical design. Int J Eng Intell Syst Electr Eng Comm 7(2):77–82

    Google Scholar 

  4. 4.

    Clerc M (2006) Particle swarm optimization. ISTE Ltd, Newport Beach

    MATH  Book  Google Scholar 

  5. 5.

    Coello Coello CA (1998) Treating constraints as objectives for single-objective evolutionary optimization. Eng Optim 32:275–308

    Article  Google Scholar 

  6. 6.

    Coello Coello CA (1999) Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry 41:113–127

    Article  Google Scholar 

  7. 7.

    Coello Coello CA, Lechuga MS (2002) MOPSO: a proposal for multiple objective particle swarm optimization. Proceedings of the Congress on Evolutionary Computation 2:1051–1056

    Google Scholar 

  8. 8.

    Coello Coello CA, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems. Springer, New York

    MATH  Google Scholar 

  9. 9.

    Coello Coello CA, Mezura Montes E (2001) Use of dominance-based tournament selection to handle constraints in genetic algorithms. In: Intelligent engineering systems through artificial neural networks (ANNIE 2001), vol. 11. ASME Press, New York. pp. 177–182

  10. 10.

    Creveling CM (1997) Tolerance design, a handbook for developing optimal specifications. Addison-Wesley, Reading

    Google Scholar 

  11. 11.

    Das I, Dennis JE (1997) A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct Multidiscip Optim 14(1):63–69

    Article  Google Scholar 

  12. 12.

    Deb K (1997) GeneAS: a robust optimal design technique for mechanical component design. In: Dasgupta D, Michalewicz Z (eds) Evolutionary algorithms in engineering applications. Springer, Berlin, pp 497–514

    Chapter  Google Scholar 

  13. 13.

    Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II KanGAL Report 200001. Indian Institute of Technology, Kanpur

    Google Scholar 

  14. 14.

    Deb K, Goyal M (1997) Optimizing engineering designs using a combined genetic search. In: Seventh International Conference on Genetic Algorithms, pp. 512–528

  15. 15.

    Engelbrecht AP (2005) Fundamentals of computational swarm intelligence. Wiley, Chichester

    Google Scholar 

  16. 16.

    Feng CX, Kusiak A (1997) Robust tolerance design with the integer programming approach. J Manuf Sci Eng 119:603–610

    Article  Google Scholar 

  17. 17.

    Forouraghi B (2000) A genetic algorithm for multiobjective robust design. J Appl Intell 12(3):151–161

    Article  Google Scholar 

  18. 18.

    Forouraghi B (2009) Optimal tolerance allocation using a multiobjective particle swarm optimizer. Int J Adv Manuf Technol 44:710–725

    Article  Google Scholar 

  19. 19.

    Gosavi A (2003) Simulation-based optimization: parametric optimization techniques and reinforcement learning. Springer, New York

    Book  Google Scholar 

  20. 20.

    Haftka RT, Gürdal Z (1992) Elements of structural optimization. Springer, New York

    MATH  Book  Google Scholar 

  21. 21.

    Hajela P, Shih CJ (1990) Multiobjective optimum design in mixed integer and discrete design variable problems. AIAA J 28(4):670–675

    Article  Google Scholar 

  22. 22.

    He S, Prempain E, Wu QH (2004) An improved particle swarm optimizer for mechanical design optimization problems. Eng Optim 36:585–605

    MathSciNet  Article  Google Scholar 

  23. 23.

    Ho SL, Yang S, Ni G, Lo EW, Wong HC (2005) A particle swarm optimization-based method for multiobjective design optimizations. IEEE Trans Magn 41:1756–1759

    Article  Google Scholar 

  24. 24.

    Jeang A (2003) Simultaneous parameter and tolerance design for an electronic circuit via computer simulation and statistical optimization. Int J Adv Manuf Technol 21:1035–1041

    Article  Google Scholar 

  25. 25.

    Kennedy J, Eberhart RC (2001) Swarm intelligence. Morgan Kaufmann, San Mateo

    Google Scholar 

  26. 26.

    Lampinen J, Zelinka I (1999) Mixed integer-discrete-continuous optimization by differential evolution. In: Proceedings of MENDEL’99, 5th International Mendel Conference on Soft Computing, pp. 77–81

  27. 27.

    Li F, Wu T, Hu M, Dong J (2010) An accurate penalty-based approach for reliability-based design optimization. Res Eng Des 21(2):87–98

    Article  Google Scholar 

  28. 28.

    Liu H, Igusa T (2006) Feature-based classifiers for design optimization. Res Eng Des 17(4):189–206

    Article  Google Scholar 

  29. 29.

    Li X (2004) Better spread and convergence: particle swarm multiobjective optimization using the maximum fitness function. Lect Notes Comput Sci 3102:117–128

    Article  Google Scholar 

  30. 30.

    Maeda Y, Matsushita N, Miyoshi S, Hikawa H (2009) On simultaneous perturbation particle swarm optimization. In: IEEE Congress on Evolutionary Computation, pp. 3271–3276

  31. 31.

    Moskowitz H, Plante R, Dufyy J (2001) Multivariate tolerance design using quality loss. IIE Transactions 33:437–448

    Google Scholar 

  32. 32.

    Ma L, Forouraghi B (2012) A modified particle swarm optimizer for engineering design. In: The 25th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AEI), pp. 187–196

  33. 33.

    Ono S, Nakayama S (2009) Multi-objective particle swarm optimization for robust optimization and its hybridization with gradient search. In: IEEE Congress on Evolutionary Computation, pp. 1629–1636

  34. 34.

    Parsopoulos KE, Vrahatis MN (2002) Recent approaches to global optimization problems through particle swarm optimization. Nat Comput 1:235–306

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Ray T, Liew KM (2002) A swarm metaphor for multiobjective design optimization. Eng Optim 34:141–153

    Article  Google Scholar 

  36. 36.

    Reddy MJ, Kumar DN (2007) An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design. Eng Optim 39:49–68

    MathSciNet  Article  Google Scholar 

  37. 37.

    Reyes-Sierra M, Coello Coello CA (2006) A survey of the state-of-the-art multi-objective particle swarm optimizers. Int J Comput Intell Res 2:287–308

    MathSciNet  Google Scholar 

  38. 38.

    Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design optimization. J Mech Des 112(2):223–230

    Article  Google Scholar 

  39. 39.

    Schönning A, Nayfeh J, Zarda J (2005) An integrated design and optimization environment for industrial large scaled systems. Res Eng Des 16(4):86–95

    Article  Google Scholar 

  40. 40.

    Shim M, Suh M (2001) Pareto-based continuous evolutionary algorithms for multiobjective optimization. Eng Comput 19:22–48

    Google Scholar 

  41. 41.

    Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3:257–271

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Babak Forouraghi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ma, L., Forouraghi, B. A hyperspherical particle swarm optimizer for robust engineering design. Int J Adv Manuf Technol 67, 1091–1102 (2013).

Download citation


  • Multi-objective optimization
  • Pareto optimization
  • Particle swarm optimization
  • Robust design
  • Design tolerances