Skip to main content
Log in

A generalized scattering data decomposition framework for determining network process–structure–property relationships in polymer materials

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this work, we present an optimization-based methodology to identify network process–structure–property relationships in multiphase polymeric materials. A quantitative description of the material structure can be provided by x-ray and neutron scattering signatures, which are modeled as the weighted sum of linearly independent components. The profile of a component depends on the shape, aggregation, and extent of fundamental structural units present in the material, and the inherent modeling complexity can be reduced by extraction of these components from process-dependent scattering datasets using minimal a priori information. The decomposition methodology we develop is based on network component analysis (NCA), a nonlinear program used to generate a unique, globally optimal matrix decomposition. Using NCA, we conduct a case study of amphiphilic triblock copolymers in solution using simulated small-angle neutron scattering data. Component signatures are successfully recovered based solely on knowledge of a network topology specified by sample scattering length density contrast-matching conditions. Then, the approach is reformulated as a mixed-integer nonlinear program in order to study systems with unknown topology, and applied in the study of ethylene/alpha-olefin copolymer crystallization from the melt using wide- and small-angle x-ray scattering (WAXS/SAXS) data. For this system, the topology is specified by the number density of structural units, and the optimal components can be correlated to crystalline and amorphous regions for WAXS datasets, while the optimal SAXS components can be correlated to ordered and disordered crystalline lamellae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olson GB (2000) Designing a new material world. Science 288(5468):993–998

    Article  Google Scholar 

  2. Olson GB (1997) Computational design of hierarchically structured materials. Science 277(5330):1237–1242

    Article  Google Scholar 

  3. Gani R (2004) Chemical product design: challenges and opportunities. Comput Chem Eng 28(12):2441–2457

    Article  Google Scholar 

  4. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, New York

  5. Hoffman JD, Davis GT, Lauritzen JI (1976) Treatise on solid state chemistry, vol. 3, Plenum, New York

    Google Scholar 

  6. Avrami M (1939) Kinetics of phase change. I. General theory. J Chem Phys 7(12):1103–1112

    Article  Google Scholar 

  7. Yamamoto T (2009) Computer modeling of polymer crystallization—toward computer-assisted materials’ design. Polymer 50(9):1975–1985

    Article  Google Scholar 

  8. Van Krevelen D (1990) Properties of polymers. Elsevier, New York

    Google Scholar 

  9. Bicerano J (2002) Prediction of polymer properties. Marcel Dekker Inc., New York

    Book  Google Scholar 

  10. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond, A Math Phys Sci 241(1226):376–396

    Article  MathSciNet  MATH  Google Scholar 

  11. Halpin JC, Kardos JL (1972) Moduli of crystalline polymers employing composite theory. J Appl Physi 43(5):2235

    Article  Google Scholar 

  12. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Article  Google Scholar 

  13. Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol 62(14):1869–1880

    Article  Google Scholar 

  14. Valavala PK, Clancy TC, Odegard GM, Gates TS (2007) Nonlinear multiscale modeling of polymer materials. Int J Solids Struct 44(3–4):1161–1179

    Article  MATH  Google Scholar 

  15. Curtin WA, Miller RE (2003) Atomistic/continuum coupling in computational materials science. Model Simul Mat Sci Eng 11(3):R33–R68

    Article  Google Scholar 

  16. Chen W, Fish J (2006) A generalized space-time mathematical homogenization theory for bridging atomistic and continuum scales. Int J Numer Methods Eng 67(2):253–271

    Article  MathSciNet  MATH  Google Scholar 

  17. Liao JC, Boscolo R, Yang YL, Tran LM, Sabatti C, Roychowdhury VP (2003) Network component analysis: reconstruction of regulatory signals in biological systems. Proc Natl Acad Sci 100(26):15,522–15,527

    Article  Google Scholar 

  18. Boscolo R, Sabatti C, Liao JC, Roychowdhury VP (2005) A generalized framework for network component analysis. IEEE/ACM Trans Comput Biol Bioinformatics 2(4):289–301

    Article  Google Scholar 

  19. Ye C, Galbraith SJ, Liao JC, Eskin E (2009) Using network component analysis to dissect regulatory networks mediated by transcription factors in yeast. PLOS Comput Biol 5(3):e1000,311

    Article  Google Scholar 

  20. Akcasu AZ, Klein R, Hammouda B (1993) Dynamics of multicomponent polymer mixtures via the random-phase-approximation including hydrodynamic interactions. Macromolecules 26(16):4136–4143

    Article  Google Scholar 

  21. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometr Intell Lab Syst 2(1–3):37–52

    Article  Google Scholar 

  22. Tauler R, Smilde A, Kowalski B (1995) Selectivity, local rank, 3-way data-analysis and ambiguity in multivariate curve resolution. J Chemom 9(1):31–58

    Article  Google Scholar 

  23. Manne R (1995) On the resolution problem in hyphenated chromatography. Chemometr Intell Lab Syst 27(1):89–94

    Google Scholar 

  24. Gemperline PJ (1999) Computation of the range of feasible solutions in self-modeling curve resolution algorithms. Anal Chem 71(23):5398–5404

    Article  Google Scholar 

  25. Tolle I, Huang XQ, Akpalu YA, Martin LL (2009) A modified network component analysis (NCA) methodology for the decomposition of x-ray scattering signatures. Ind Eng Chem Res 48(13):6137–6144

    Article  Google Scholar 

  26. Hammouda B (2010) SANS from pluronic P85 in d-water. Eur Polym J 46(12):2275–2281

    Article  Google Scholar 

  27. Pedersen JS, Svaneborg C (2002) Scattering from block copolymer micelles. Curr Opin Colloid Interface Sci 7(3–4):158–166

    Article  Google Scholar 

  28. Forster S, Burger C (1998) Scattering functions of polymeric core-shell structures and excluded volume chains. Macromolecules 31(3):879–891

    Article  Google Scholar 

  29. Foster B, Cosgrove T, Hammouda B (2009) Pluronic triblock copolymer systems and their interactions with ibuprofen. Langmuir 25(12):6760–6766

    Article  Google Scholar 

  30. Fourer R, Gay DM, Kernighan BW (2003) AMPL—a modeling language for mathematical programming. Thomson, Canada

  31. Wachter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57

    Article  MathSciNet  Google Scholar 

  32. Li Y, Akpalu YA (2004) Probing the melting behavior of a homogeneous ethylene/1-hexene copolymer by small-angle light scattering. Macromolecules 37(19):7265–7277

    Article  Google Scholar 

  33. Bonami P, Biegler LT, Conna AR, Cornuejols G, Grossmann IE, Laird CD, Lee J, Lodi A, Margot F, Sawaya N, Wachter A (2008) An algorithmic framework for convex mixed integer nonlinear programs. Discret Optim 5(2):186–204

    Article  MATH  Google Scholar 

  34. Ruland W (1961) X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallogr 14(11):1180

    Article  Google Scholar 

  35. Benson HY, Vanderbei RJ, Shanno DF (2002) Interior-point methods for nonconvex nonlinear programming: filter methods and merit functions. Comput Optim Appl 23(2):257–272

    Article  MathSciNet  MATH  Google Scholar 

  36. Vonk CG (1973) Computerization of rulands x-ray method for determination of crystallinity in polymers. J Appl Crystallogr 6(APR1):148–152

    Article  Google Scholar 

  37. Bensason S, Minick J, Moet A, Chum S, Hiltner A, Baer E (1996) Classification of homogeneous ethylene-octene copolymers based on comonomer content. J Polym Sci, B, Polym Phys 34(7):1301–1315

    Article  Google Scholar 

  38. Alizadeh A, Richardson L, Xu J, McCartney S, Marand H, Cheung YW, Chum S (1999) Influence of structural and topological constraints on the crystallization and melting behavior of polymers. 1. ethylene/1-octene copolymers. Macromolecules 32(19):6221–6235

    Article  Google Scholar 

  39. Hermans J (1944) Concerning the influence of grid disturbances on the x-ray pattern, particularly in gels. Recl Trav Chim Pays-Bas 63:211–218

    Article  Google Scholar 

  40. Crist B (2001) Small-angle x-ray scattering and polymer melting: a model study. J Polym Sci, B, Polym Phys 39(20):2454–2460

    Article  Google Scholar 

  41. Crist B (2003) Saxs studies of polymer melting: models for surface melting, sequential melting, and stack melting. Macromolecules 36(13):4880–4890

    Article  Google Scholar 

  42. Cser F (2001) About the lorentz correction used in the interpretation of small angle x-ray scattering data of semicrystalline polymers. J Appl Polym Sci 80(12):2300–2308

    Article  Google Scholar 

  43. Guinier A, Fournet G (1955) Small angle scattering of X-rays. Wiley, New York

    Google Scholar 

  44. Murthy NS, Akkapeddi MK, Orts WJ (1998) Analysis of lamellar structure in semicrystalline polymers by studying the absorption of water and ethylene glycol in nylons using small-angle neutron scattering. Macromolecules 31(1):142–152

    Article  Google Scholar 

  45. Wang ZG, Hsiao B, Murthy N (2000) Comparison of intensity profile analysis and correlation function methods for studying the lamellar structures of semi-crystalline polymers using small-angle x-ray scattering. J Appl Crystallogr 33(3–1):690–694

    Article  Google Scholar 

  46. Alamo RG, Mandelkern L (1991) Crystallization kinetics of random ethylene copolymers. Macromolecules 24(24):6480–6493

    Article  Google Scholar 

  47. Muthukumar M (2005) Modeling polymer crystallization. Adv Polym Sci 191:241–274

    Article  Google Scholar 

  48. Stribeck N, Bayer R, Bosecke P, Camarillo AA (2005) Visualisation of the structure transfer between an oriented polymer melt and the semi-crystalline state. Polymer 46(8):2579–2583

    Article  Google Scholar 

  49. Roe R (2000) Methods of X-ray and neutron scattering in polymer science. Oxford University Press, Inc., New York

    Google Scholar 

  50. Percus JK, Yevick GJ (1958) Analysis of classical statistical mechanics by means of collective coordinates. Phys Rev 110(1):1–13

    Article  MathSciNet  MATH  Google Scholar 

  51. Kinning DJ, Thomas EL (1984) Hard-sphere interactions between spherical domains in diblock copolymers. Macromolecules 17(9):1712–1718

    Article  Google Scholar 

  52. Akpalu YA, Amis EJ (1999) Evolution of density fluctuations to lamellar crystals in linear polyethylene. J Chem Phys 111(18):8686–8695

    Article  Google Scholar 

  53. Halpin JC, Kardos JL (1976) The halpin-tsai equations: a review. Polym Eng Sci 16(5):344–352

    Article  Google Scholar 

  54. Balta-Calleja FJ, Vonk CG (1989) X-ray Scattering of synthetic polymers. Elsevier, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lealon L. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolle, I., Martin, L.L. A generalized scattering data decomposition framework for determining network process–structure–property relationships in polymer materials. Int J Adv Manuf Technol 64, 555–577 (2013). https://doi.org/10.1007/s00170-012-4427-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4427-2

Keywords

Navigation