Skip to main content
Log in

An experimental investigation on oil mist characterization used in MQL milling process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this study, a method is developed to determine the oil mist characteristics for the minimal quantity lubricant process. The oil mist is characterized by the size, velocity, and volume flow rate of its particles. In each case, a specific measurement process is used: the laser diffraction granulometry method, the particle image velocimetry, and the gravimetric method. These methods are used in the case of static and simple models with different inner channels. Experimental tests have been done with the same inner channel as the existing spindle inner channel. Different output models with different inner canalizations have been tested, using these experimental processes. The main goal is to control the characteristics of output oil mist as a function of the input oil mist device parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klocke F, Eisenblatter G (1997) Dry cutting. Ann ClRP 46:519–526

    Article  Google Scholar 

  2. Heinemann R, Hinduja S, Barrow G, Petuelli G (2006) Effect of MQL on the tool life of small twist drills in deep-hole drilling. Int J Mach Tool Manuf 46(1):1–6

    Article  Google Scholar 

  3. Tasdelen B (2008) Analysis and application of minimum quantity lubrication (MQL). thesis, Chalmers University of Technology

  4. Lopez de Lacalle LN, Angulo C, Lamikiz A, Sanchez JA (2006) Experimental and numerical investigation on the effect of spray cutting fluids in high speed milling. J Mater Process Technol 172:11–15

    Article  Google Scholar 

  5. Dhar NR, Ahmed MT, Islam S (2006) An experimental investigation on the effect of minimum quantity lubrication in machining AISI 1040 steel. Int J Mach Tool Manuf 47:748–753

    Article  Google Scholar 

  6. Machado AR, Wallbank J (1997) The effect of extremely low lubricant volumes in machining. Wear 210:76–82

    Article  Google Scholar 

  7. Aoyama T (2002) Development of a mixture supply for machining with minimal quantity lubrication. CIRP Ann Manuf Technol 51(1):289–292

    Article  Google Scholar 

  8. Rahman M, Senthil Kumar A, Salam MU (2002) Experimental evaluation on the effect of minimal quantities of lubricant in milling. Int J Mach Tool Manuf 42:539–547

    Article  Google Scholar 

  9. Obikawa T, Kamata Y, Shinozuka J (2006) High speed grooving applying MQL. Int J Mach Tool Manuf 46:1854–1861

    Article  Google Scholar 

  10. Kamata Y, Obikawa T (2007) High speed MQL finish turning of Inconel 718 with different coated tools. J Mater Process Technol 192:281–286

    Article  Google Scholar 

  11. Obikawa T, Kamata Y, Asano Y, Nakayama K, Otieno AW (2008) Micro-liter lubrication machining of Inconel 718. Int J Mach Tools Manuf 48(15):1599–1604

    Google Scholar 

  12. Aoyama T, Kakunima Y, Yamashita M, Aoki M (2008) Development of a new lean lubrication system for near dry machining process. CIRP Ann Manuf Technol 57:125–128

    Article  Google Scholar 

  13. Attanasio A, Gelfi M, Giardini C, Remino C (2006) Minimal quantity lubrication in turning: effect on tool wear. Wear 260:333–338

    Article  Google Scholar 

  14. Park K-H, Olortegui-Yume J, Yoon M-C, Kwon P (2010) A study on droplets and their distribution for minimum quantity lubrication (MQL). Int J Mach Tool Manuf 50:824–833

    Article  Google Scholar 

  15. Benajes J, Molina S, González C, Donde R (2008) The role of nozzle convergence in diesel combustion. Fuel 87:1849–1858

    Article  Google Scholar 

  16. Peiner E, Balke M, Doering L (2009) Form measurement inside fuel injector nozzle spray holes. Microelectron Eng 86:984–986

    Article  Google Scholar 

  17. Kelly JF, Cotterell MG (2002) Minimal lubrication of aluminium alloys. J Mater Process Technol 120:327–334

    Article  Google Scholar 

  18. Wakabayashi T, Suda S, Inasaki I, Terasaka K, Musha Y, Toda Y (2007) Tribological action and cutting performance of MQL media in machining of aluminum. Manuf Technol 56(1):97–100

    Article  Google Scholar 

  19. Suda S, Wakabayashi T, Inasaki I, Yokota H (2004) Multifunctional application of a synthetic ester to machine tool lubrication based on MQL machining lubricants. CIRP Ann Manuf Technol 53(1):61–64

    Article  Google Scholar 

  20. Feret L, Lacour C, de Chasemartin S, Ducruix S, Durox D, Laurent F, Massot M (2009) Pulsated free jets with polydisperse spray injection: experiments and numerical simulations. Proc Combust Inst 32(2):2215–2222

    Article  Google Scholar 

  21. Priol L, Baudel P, Louste C, Romat H (2005) Laser granulometry measurements on electrified jets for different lengths of injector. J Electrost 63:899–904

    Article  Google Scholar 

  22. Mitchell JP, Nagel MW, Nichols S, Nerbrink O (2006) Laser diffractometry as a technique for the rapid assessment of aerosol particle size from inhalers. J Aerosol Med 19(4):409–433

    Article  Google Scholar 

  23. KWONG WTJ, HO SL, COATES AL (2000) Comparison of nebulized particle size distribution with Malvern laser diffraction analyzer versus Andersen cascade impactor and low-flow Marple personal cascade impactor. J Aerosol Med 13(4):303–314

    Article  Google Scholar 

  24. Vecellio None L, Grimbert D, Becquemin MH, Boissinot E, Le Pape A, Lemarié E, Diot P (2001) Validation of laser diffraction method as a substitute for cascade impaction in the European project for a nebulizer standard. J Aerosol Med 14(1):107–114

    Article  Google Scholar 

  25. Husted BP, Petersson P, Lund I, Holmstedt G (2009) Comparison of PIV and PDA droplet velocity measurement techniques on two high-pressure water mist nozzles. Fire saf J 44:1030–1045

    Article  Google Scholar 

  26. Schliter T, Merzkirch W (1996) PIV measurements of the time-averaged flow velocity downstream of flow conditioners in a pipeline. Flow Meas Instrum 7:173–179

    Article  Google Scholar 

  27. Ozalp C, Pinarbasi A, Fakilar MS, Sahin B (2007) PIV measurements of flow through a sudden contraction. Flow Meas Instrum 18:121–128

    Article  Google Scholar 

  28. Vecellio L, Grimbert D, Bordenave J, Benoit G, Furet Y, Fauroux B, Boissinot E, De Monte M, Lemarié E, Diot P (2004) Residual gravimetric method to measure nebulizer output. J Aerosol Med 17(1):63–71

    Article  Google Scholar 

  29. Tandon R, McPeck M, Smaldone GC (1997) Measuring nebulizer output: aerosol production vs gravimetric analysis. Chest 111(5):1361–1365

    Article  Google Scholar 

  30. Adiga KC, Willauer HD, Ananth R, Williams FW (2009) Implications of droplet breakup and formation of ultra fine mist in blast mitigation. Fire Saf J 44:363–369

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Duchosal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duchosal, A., Leroy, R., Vecellio, L. et al. An experimental investigation on oil mist characterization used in MQL milling process. Int J Adv Manuf Technol 66, 1003–1014 (2013). https://doi.org/10.1007/s00170-012-4384-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4384-9

Keywords

Navigation