Skip to main content
Log in

Positional, geometrical, and thermal errors compensation by tool path modification using three methods of regression, neural networks, and fuzzy logic

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

One of the main sources of inaccuracy in production is machine tool errors. In this study, a method is introduced to model and compensate positional, geometrical, and thermally induced errors of machine tools by an offline technique. Thermal errors are modeled by three ways of multiple linear regression, artificial neural networks, and neuro-fuzzy modeling. The required database is provided by measuring errors using a laser interferometer. Subsequently, the models are evaluated and the best one which is neuro-fuzzy with a mean square error of 0.375 μm is chosen to predict the errors using developed software. The experimental procedure is optimized by a preliminary broad assessment. Volumetric errors are calculated using rigid body kinematic and applied to modify the initial G-codes. The introduced method is validated by compensating errors on a free-form which shows significant average improvement of errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ocafor AC, Ertekin YM (2000) Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics. Int J Mach Tool Manuf 40:1199–1213

    Article  Google Scholar 

  2. Chen L, Tsutsumi M (1996) Measurement and compensation of corner tracking errors of CNC machine tools. Int J Jpn Soc Precis Eng 30(4):331–336

    Google Scholar 

  3. Bryan JB (1968) International status of thermal error research. Ann CIRP 16:203–215

    Google Scholar 

  4. Hao Wu, Hongtao Z, Qianjian G, Xiushan W, Jianguo Y (2008) Thermal error optimization modeling and real-time compensation on a CNC turning center. J Mater Process Tech 207(1–3):172–179

    Article  Google Scholar 

  5. Kim JD, Kim DS (1997) Development and application of an ultra-precision lathe. Int J Adv Manuf Tech 13:164–171

    Article  Google Scholar 

  6. Kim HS, Jeong KS, Lee DG (1997) Design and manufacture of a three-axis ultra-precision CNC grinding machine. ASME Trans J Mater Process Tech 71:258–266

    Article  Google Scholar 

  7. Vahebi Nojedeh M, Habibi M, Arezoo B (2011) Tool path accuracy enhancement through geometrical error compensation. Int J Mach Tool Manuf 51(6):471–482

    Article  Google Scholar 

  8. Habibi M, Arezoo B, Vahebi Nojedeh M (2011) Tool deflection and geometrical error compensation by tool path modification. Int J Mach Tool Manuf 51(6):439–449

    Article  Google Scholar 

  9. Li S, Zhang Y, Zhang G (1997) A study of pre-compensation for thermal errors of NC machine tools. Int J Mach Tool Manuf 37(12):1715–1719

    Article  Google Scholar 

  10. Jedrzejewski J, Kaczmarek J, Kowal Z, Winiarski Z (1990) Numerical optimization of thermal behavior of machine tools. Ann CIRP 39(1):379–382

    Article  Google Scholar 

  11. Kim SK, Cho DW (1997) Real-time estimation of temperature distribution in a ball-screw system. Int J Mach Tool Manuf 37(4):451–464

    Article  Google Scholar 

  12. Haitao Z, Jianguo Y, Jinhua S (2007) Simulation of thermal behavior of a CNC machine tool spindle. Int J Mach Tool Manuf 47:1003–1010

    Article  Google Scholar 

  13. Huang SC (1995) Analysis of a model to forecast thermal deformation of ball screw feed drive systems. Int J Mach Tool Manuf 35(8):1099–1104

    Article  Google Scholar 

  14. Veldhuis SC, Elbestawi MA (1995) A strategy for the compensation of errors in five-axis machining. Ann CIRP 44(1):373–378

    Article  Google Scholar 

  15. Yang M, Lee J (1998) Measurement and prediction of thermal errors of a CNC machining center using two spherical balls. Int J Mater Process Tech 75:180–189

    Article  Google Scholar 

  16. Pai-Chung Tseng (1997) Real-time thermal inaccuracy compensation method on a machining center. Int J Adv Manuf Tech 13(3):182–190

    Article  Google Scholar 

  17. Chen JS, Yuan J, Ni J (1996) Thermal error modeling for real-time error compensation. Int J Adv Manuf Tech 12(4):266–275

    Article  Google Scholar 

  18. Pahk HJ, Lee SW (2002) Thermal error measurement and real time compensation system for the CNC machine tools incorporating the spindle thermal error and the feed axis thermal error. Int J Adv Manuf Tech 20:487–494

    Article  Google Scholar 

  19. Wang KC, Tseng PC, Lin KM (2006) Thermal error modeling of a machining center using grey system theory and adaptive network-based fuzzy inference system. JSME Int J 49(4):1179–1187

    Article  Google Scholar 

  20. Eskandari S, Arezoo B, Abdullah A (2012) Thermal errors modeling of a CNC machine’s axis using neural network and fuzzy logic. Appl Mech Mater 110–116:2976–2982

    Google Scholar 

  21. Okafor AC, Ertekin YM (2000) Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics. Int J Mach Tool Manuf 40:1199–1213

    Article  Google Scholar 

  22. Ross TJ (2004) Fuzzy logic with engineering applications, 2nd edn. Wiley, Chichester

    MATH  Google Scholar 

  23. Jue LS, Sen OC (2003) A neuro-fuzzy system modeling with self-constructing rule generation and hybrid SVD-based learning. IEEE Trans Fuzzy Syst 11(3):341–353

    Article  Google Scholar 

  24. Castellano G, Faneli AM (2001) A self-organizing neural network inference network. Dissertation, University Degli Studi Di Bari

  25. Feng JC, Teng LC (1998) An on-line self-constructing neural fuzzy inference network and its application”. IEEE Trans Fuzzy Syst 6(1):12–32

    Article  Google Scholar 

  26. Dragan K, Emil L (2004) Identification complex system based on neural and Takagi-Sugeno fuzzy model. IEEE Trans Syst Man Cybern B 34(1):272–282

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Eskandari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eskandari, S., Arezoo, B. & Abdullah, A. Positional, geometrical, and thermal errors compensation by tool path modification using three methods of regression, neural networks, and fuzzy logic. Int J Adv Manuf Technol 65, 1635–1649 (2013). https://doi.org/10.1007/s00170-012-4285-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4285-y

Keywords

Navigation