Skip to main content
Log in

Measurement technology of the hot-state size for heavy shell ring forging

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The measurement technology of the hot-state size for heavy shell ring forging is researched. A measurement technology is proposed and designed in this paper. The outer diameter is measured by laser scanning technology. The relationship between temperature and size is derived. Using this relationship, the inner diameter is measured by combining the outer diameter and temperature. The temperature is measured by infrared temperature measurement technology based on three-level interference filter. The measuring method is feasible according to the experimental result. Thereby, the measurement for hot-state size of heavy shell ring forging is achieved, and the requirement of the large forgings' green manufacture is fulfilled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu MC, Zhou ZF, Zhang T (2004) Research on the large dimension high precision laser interferometer without guide. J Laser 25(3):80–81. doi:0253-2743(2004)03-0080-02

    MATH  Google Scholar 

  2. Huang SJ, Lin CC (1997) A three-dimensional non-contact measurement system. Int J Adv Manuf Technol 13(6):419–425. doi:10.1007/BF01179037

    Article  MathSciNet  Google Scholar 

  3. Xiao YH, Zhan QM, Pang QC (2007) 3D data acquisition by terrestrial laser scanning for protection of historical buildings. Int Conf Wirel Commun Netw Mob Comput 21–25:5971–5974. doi:10.1109/WICOM.2007.1464

    Google Scholar 

  4. Jouaneh M, Lemaster RL, Dornfeld DA (1987) Measuring workpiece dimensions using a non-contact laser detector system. Int J Adv Manuf Technol 2(1):59–74. doi:10.1007/BF02601469

    Article  Google Scholar 

  5. Wen HY, Dong XH, Yan CL, Ruan XY (2007) Three dimension profile extrusion simulation using mesh free method. Int J Adv Manuf Technol 34(3–4):270–276. doi:10.1007/s00170-006-0601-8

    Article  Google Scholar 

  6. Hojjat Y, Karafi MR, Ghanbari M, Lotfi M (2011) Development of an inductive encoder for simultaneous measurement of two-dimensional displacement. Int J Adv Manuf Technol 5–8:681–688. doi:10.1007/s00170-010-2865-2

    Article  Google Scholar 

  7. Ascione R, Polini W (2010) Measurement of nonrigid freeform surfaces by coordinate measuring machine. Int J Adv Manuf Technol 51(9–12):1055–1067. doi:10.1007/s00170-010-2684-5

    Article  Google Scholar 

  8. Ferri C, Faraway J, Brousseau E (2010) Calibration of a white light interferometer for the measurement of micro-scale dimensions. Int J Adv Manuf Technol 47(1–4):125–135. doi:10.1007/s00170-009-2050-7

    Article  Google Scholar 

  9. Wang WL, Jiang XG, Wu TL, Qi SX, Tan Z, Wang W (2002) Data processing method of measuring CCD imaging MTF with step sample. J Optoel Laser 13(2):173–175. doi:1005-0086(2002)02-0173-03

    Google Scholar 

  10. Liu FC, Shi BS, Xu GK (2000) Heavy forgings laser-sizing system controlled by monolithic controller. Manuf Autom 22(1):53–55. doi:1009-0134(2000)01-0053-03

    Google Scholar 

  11. Hu CH, Liu B, Zheng LJ (2008) Dimensional measurement of heavy forging based on double CCD. Infrared Laser Eng 37:11–14. doi:1007-2276(2008)-0011-04

    Google Scholar 

  12. Nie SM, Zhang Q, Li SK, Xue YD (2006) The research of the mathematical model in the CCD measuring about the dimension of large-size forging workpiece. J Plast Eng 13(6):110–113. doi:1007-2012(2006)06-0110-04

    Google Scholar 

  13. Li SK, Nie SM, Tang JL, Wu P (2009) The research of denoising algorithm about the CCD image of large-size forging workpiece. J Plast Eng 16(1):202–205. doi:1007-2012(2009)01-0202-04

    Google Scholar 

  14. Xu YG, Zhao XC, Tian ZS (2008) Large forging dimension measurement using the method of laser ranging. Mach Des Res 24(6):94–97. doi:1006-2343(2008)06-094-04

    Google Scholar 

  15. Yu P, Gao F, Guo WZ, Tian ZS, Jin ZL (2008) Research and development of a new large-size forgings measurement system. Mach Des Res 24(3):89–92. doi:1006-2343(2008)03-089-04

    Google Scholar 

  16. Tian ZS, Gao F, Jin ZL, Zhao XC (2009) Dimension measurement of hot large forgings with a novel time-of-flight system. Int J Adv Manuf Technol 44(1–2):125–132. doi:10.1007/s00170-008-1807-8

    Article  Google Scholar 

  17. Lin XF, Shi SL (2002) Size measurement of work pieces by using CCD measuring system. Opt Instrum 24(3):11–13. doi:1005-5630(2002)03-0011-03

    Google Scholar 

  18. Da ZS, Shi HF (2000) Signal extraction of line scan CCD used in dimension measurement. J XIAN Inst Technol 20(1):35–38. doi:1000-5714(2000)01-0035-04

    Google Scholar 

  19. Wang WC, Pei RQ (2001) Multiple area array CCD based measurement research for big size object precision. Opt Instrum 23(4):3–7. doi:1005_5630(2001)04-0003-05

    Google Scholar 

  20. Xu SL (1983) Mathematical physics problem analysis. Phoenix Science Press, Jiangsu, pp 349–354, ISBN:7807553332

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianbin Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, X., Liu, B. & Zhang, Y. Measurement technology of the hot-state size for heavy shell ring forging. Int J Adv Manuf Technol 65, 543–548 (2013). https://doi.org/10.1007/s00170-012-4193-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4193-1

Keywords

Navigation