Skip to main content
Log in

Dynamic response of a beam carrying a lumped mass along its span

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, we study the periodic solutions for the free vibration of a conservative oscillator with fifth-order nonlinearity using two new methods, the energy balance method and the variational approach. We compare the results obtained with those yielded by the traditional harmonic balance method and equivalent linearization–nonlinearization method. The periodic solutions are then verified using the Runge–Kutta approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kopmaz O, Gündogdu Ö (2003) On the curvature of an Euler–Bernoulli beam. Int J Mech Eng Educ 31:132–142

    Google Scholar 

  2. Biondi B, Caddemi S (2005) Closed form solutions of Euler–Bernoulli beams with singularities. Intern J Solids Struct 42:3027–3044

    Article  MATH  Google Scholar 

  3. Meirovitch L (2001) Fundamentals of vibrations. McGraw-Hill, International Edition

    Google Scholar 

  4. Dimarogonas A (1996) Vibration for engineers, 2nd edn. Prentice-Hall, New Jersey

    Google Scholar 

  5. Zhou D, Ji T (2006) Dynamic characteristics of a beam and distributed spring-mass system. Intern J Solids Struct 43:5555–5569

    Article  MATH  Google Scholar 

  6. Failla G, Santini A (2008) A solution method for Euler–Bernoulli vibrating discontinuous beams. Mech Res Commun 35:517–529

    Article  MathSciNet  Google Scholar 

  7. Yeih W, Chen JT, Chang CM (1999) Applications of dual MRM for determining the natural frequencies and natural modes of an Euler–Bernoulli beam using the singular value decomposition method. Eng Anal Bound Elem 23:339–360

    Article  MATH  Google Scholar 

  8. Hamdan MN, Shabaneh NH (1997) On the large amplitude free vibrations of a restrained uniform beam carrying an intermediate lumped mass. J Sound Vib 199:711–736

    Article  Google Scholar 

  9. Sfahani MG, Barari A, Omidvar M, Ganji SS, Domairry G (2011) Dynamic response of inextensible beams by improved energy balance method. Proc Inst Mech Eng, Part K: J Multi-body Dyn 225:66–73

    Google Scholar 

  10. He JH (2005) Homotopy perturbation method for bifurcation on nonlinear problems. Intern J Nonlinear Sci Numer Simul 6:207–208

    Google Scholar 

  11. Ganji SS, Barari A, Sfahani MG, Domairry G, Teimourzadeh Baboli P (2011) Consideration of transient stream/aquifer interaction with the non-linear Boussinesq problem using HPM. J King Saud Univ—Sci 23:211–216

    Article  Google Scholar 

  12. He JH (2008) Recent development of the homotopy perturbation method. Topological Methods Nonlinear Anal 31:205–209

    MATH  Google Scholar 

  13. Barari A, Omidvar M, Ghotbi AR, Ganji DD (2008) Application of homotopy perturbation method and variational iteration method to nonlinear oscillator differential equations. Acta Applicandae Math 104:161–171

    Article  MathSciNet  MATH  Google Scholar 

  14. Hosseinzadeh E, Barari A, Fouladi F, Domairry G (2010) Numerical analysis of forth-order boundary value problems in fluid mechanics and mathematics. Therm Sci 14:1101–1110

    Article  Google Scholar 

  15. Miansari MO, Miansari ME, Barari A, Domairry G (2010) Analysis of Blasius equation for Flat-plate flow with infinite boundary value. Intern J Comput Methods Eng Sci Mech 11:79–84

    Article  MathSciNet  MATH  Google Scholar 

  16. Barari A, Omidvar M, Ghotbi AR, Ganji DD (2009) Assessment of water penetration problem in unsaturated soils. Hydrol Earth Syst Sci Discuss 6:3811–3833

    Article  Google Scholar 

  17. He JH (2008) An elementary introduction to recently developed asymptotic methods and nano-mechanics in textile engineering. Intern J Mod Phys B 22:3487–3578

    Article  MATH  Google Scholar 

  18. He JH (2002) Modified Lindstedt–Poincare methods for some strongly nonlinear oscillations, Part I:expansion of a constant. Intern J Non–linear Mech 37:309–314

    Article  MATH  Google Scholar 

  19. He JH (2001) Modified Lindstedt–Poincare methods for some strongly nonlinear oscillations. Part III: double series expansion. Intern J Nonlinear Sci Numer Simul 2:317–320

    MATH  Google Scholar 

  20. Ramos JI (2008) An artificial parameter-Linstedt–Poincaré method for oscillators with smooth odd nonlinearities. Chaos, Solitons & Fractals 41:380–398

    Article  Google Scholar 

  21. Wang SQ, He JH (2008) nonlinear oscillator with discontinuity by parameter-expansion method. Chaos, Soliton & Fractals 35:688–691

    Article  MATH  Google Scholar 

  22. Kimiaeifar A, Lund E, Thomsen OT, Barari A (2010) On approximate analytical solutions of nonlinear vibrations of inextensible beams using parameter-expansion method. Intern J Nonlinear Sci Numer Simul 11:743–753

    Google Scholar 

  23. Wang SQ, He JH (2008) Nonlinear oscillator with discontinuity by parameter-expanding method. Chaos, Solitons & Fractals 35:688–691

    Article  MATH  Google Scholar 

  24. Shou DH, He JH (2007) Application of parameter-expanding method to strongly nonlinear oscillators. Intern J Nonlinear Sci Numer Simul 8:121–124

    Google Scholar 

  25. He JH (1999) Some new approaches to Duffing equation with strongly and high order nonlinearity (II) parameterized perturbation technique. Commun Nonlinear Sci Num Simul 4:81–82

    Article  MATH  Google Scholar 

  26. Okuizumi N, Kimura K (2004) Multiple time scale analysis of hysteretic systems subjected to harmonic excitation. J Sound Vib 272:675–701

    Article  Google Scholar 

  27. Marathe A, Chatterjee A (2006) Wave attenuation in nonlinear periodic structures using harmonic balance and multiple scales. J Sound Vib 289:871–888

    Article  Google Scholar 

  28. Gottlieb HPW (2006) Harmonic balance approach to limit cycles for nonlinear jerk equations. J Sound Vib 297:243–250

    Article  MathSciNet  MATH  Google Scholar 

  29. Peng ZK, Lang ZQ, Billings SA, Tomlinson GR (2008) Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis. J Sound Vib 311:56–73

    Article  Google Scholar 

  30. Chen YM, Liu JK (2007) A new method based on the harmonic balance method for nonlinear oscillators. Phys Lett A 368:371–378

    Article  MATH  Google Scholar 

  31. Hu H, Tang JH (2006) Solution of a Duffing-harmonic oscillator by the method of harmonic balance. J Sound Vib 294:637–639

    Article  MathSciNet  MATH  Google Scholar 

  32. Momeni M, Jamshidi N, Barari A, Ganji DD (2011) Application of He’s energy balance method to Duffing harmonic oscillators. Int J Comput Math 88:135–144

    Article  MathSciNet  MATH  Google Scholar 

  33. Bayat M, Shahidi M, Barari A, Domairry G (2011) Analytical evaluation of the nonlinear vibration of coupled oscillator systems. Zeitschrift für Naturforschung A 66a:1–16

    Article  Google Scholar 

  34. Bayat M, Barari A, Shahidi M (2011) Dynamic response of axially loaded Euler–Bernoulli beams. Mechanika 17:172–177

    Article  Google Scholar 

  35. Fouladi F, Hosseinzadeh E, Barari A, Domairry G (2010) Highly nonlinear temperature dependent fin analysis by variational iteration method. J Heat Tran Res 41:155–165

    Article  Google Scholar 

  36. Ganji DD, Babazadeh H, Jalaei MH, Tashakkorian H (2008) Application of He’s variational iteration methods for solving nonlinear BBMB equations and free vibrations of systems. Acta Applicandae Math 106:359–367

    Article  MathSciNet  Google Scholar 

  37. Barari A, Omidvar M, Ganji DD, Poor AT (2008) An approximate solution for boundary value problems in structural engineering and fluid mechanics. Journal of Mathematical Problems in Engineering, Article number 394103, 1–13

  38. Mirgolbabaei H, Barari A, Ibsen LB, Sfahani MG (2010) Numerical solution of boundary layer flow and convection heat transfer over a flat plate. Arch Civ Mech Eng 10:41–51

    Google Scholar 

  39. Ganji SS, Ganji DD, Karimpour S (2009) He's energy balance and He's variational methods for nonlinear oscillations in engineering. Intern J Modern Physics B 23:461–471

    Article  MATH  Google Scholar 

  40. Xu L (2008) Variational approach to Solitons of nonlinear dispersive K(m,n) equations. Chaos, Solitons & Fractals 37:137–143

    Article  MathSciNet  MATH  Google Scholar 

  41. Lai SK, Lim CW, Wu BS, Wang C, Zeng QC, He XF (2009) Newton-harmonic balancing approach for accurate solutions to nonlinear cubic–quintic Duffing oscillators. Appl Math Mod 33:852–866

    Article  MathSciNet  MATH  Google Scholar 

  42. Ganji SS, Barari A, Ibsen LB, Domairry G (2012) Differential transform method for mathematical modeling of jamming transition problem in traffic congestion flow. Cent Eur J Oper Res 20:87–100

    Google Scholar 

  43. Omidvar M, Barari A, Momeni M, Ganji DD (2010) New class of solutions for water infiltration problems in unsaturated soils. Geomech Geoeng: An Intern J 5:127–135

    Article  Google Scholar 

  44. Ibsen LB, Barari A, Kimiaeifar A (2010) Analysis of highly nonlinear oscillation systems using He’s max–min method and comparison with homotopy analysis and energy balance methods. Sadhana 35:1–16

    Article  MathSciNet  Google Scholar 

  45. Ganji SS, Barari A, Ganji DD (2011) Approximate analysis of two mass-spring systems and buckling of a column. Comput & Math Appl 61:1088–1095

    Article  MathSciNet  MATH  Google Scholar 

  46. Sfahani MG, Ganji SS, Barari A, Mirgolbabaei H, Domairry G (2010) Analytical solutions to nonlinear conservative oscillator with fifth-order non-linearity. Earthq Eng Eng Vib 9:367–374

    Article  Google Scholar 

  47. Chen S, Liu F, Zhuang P, Anh V (2009) Finite difference approximations for the fractional Fokker–Planck equation. Appl Math Model 33:256–273

    Article  MathSciNet  MATH  Google Scholar 

  48. Kimiaeifar A, Tolou N, Barari A, Herder JL (2011) Large deflection analysis of cantilever beam under end point and distributed load. Chinese Institute of Engineers, in press

  49. Karimpour S, Ganji SS, Barari A, Ibsen LB, Domairry G (2011) Nonlinear vibration of an elastically restrained tapered beam. Science China Physics, Mechanics and Astronomy, doi:10.1007/s11433-012-4661-5

  50. Ganji SS, Barari A, Babazadeh H, Sfahani MG, Domairry G (2011) Higher-order approximation of cubic–quintic Duffing model. J Vibroeng 13:219–232

    Google Scholar 

  51. Ghadimi M, Kaliji HD, Barari A (2011) Analytical solutions to nonlinear mechanical oscillation problems. J Vibroeng 13:133–144

    Google Scholar 

  52. Ganji SS, Barari A, Najafi M, Domairry G (2011) Analytical evaluation of jamming transition problem. Can J Phys 89: 729–738

    Google Scholar 

  53. Zwillinger D. (1997) Handbook of differential equations, 3rd edition. Academic

  54. Anderson DA, Tannehill JC (1984) Computational fluid mechanics and heat transfer. Hemisphere, 1984.

  55. Jarrar FSM, Hamdan MN (2007) Nonlinear vibrations and buckling of a flexible rotating beam: a prescribed torque approach. Mech Mach Theory 42:919–939

    Article  MATH  Google Scholar 

  56. Al-Qaisia AA, Hamdan MN, Al-Bedoor BO (2000) On the steady state response of a cantilever beam partially immersed in a fluid and carrying an intermediate mass. Shock Vib 7:179–194

    Google Scholar 

  57. Al-Qaisia AA, Hamdan MN (2002) Bifurcation and chaos of an immersed cantilever beam in a fluid and carrying an intermediate mass. J Sound Vib 253:859–888

    Article  Google Scholar 

  58. Hamdan MN, Dado MHF (1997) Large amplitude free vibrations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. J Sound Vib 206(2):151–168

    Article  Google Scholar 

  59. Chen SS, Chen CK (2009) Application of the differential transformation method to the free vibrations of strongly non-linear oscillators. Nonlinear Anal: Real World Appl 10:881–888

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Ganji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sfahani, M.G., Barari, A., Ganji, S.S. et al. Dynamic response of a beam carrying a lumped mass along its span. Int J Adv Manuf Technol 64, 1435–1443 (2013). https://doi.org/10.1007/s00170-012-4113-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4113-4

Keywords

Navigation