Skip to main content
Log in

Precision contouring control of machine tools

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Computer numerical control (CNC) machines are now widely used in the manufacturing industry. There is an increasing need for lower-costing machines capable of high precision machining. To achieve high precision machining, the motions of the axes of these machine tools need to be controlled precisely so that they follow a desired path, or contour, accurately. This paper discusses some of the factors that can affect the accuracy of the contour generated. Also discussed are some compensation approaches to compensating the geometrical errors of these machines so as to achieve precision results even with not-so-accurately build machines. Also presented and discussed are the results of approaches taken in improving contouring accuracy through the design and tuning of the machine axis controllers as well as some contour path compensation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altintas Y, Sencer B (2010) High-speed contouring control strategy for five-axis machine tools. CIRP Ann - Manuf Technol 59(1):417–420. doi:10.1016/j.cirp.2010.03.019

    Article  Google Scholar 

  2. Bristow D, Tharayil M, Alleyne A (2006) A survey of iterative learning control. IEEE Control Syst 26(3):96–114

    Article  Google Scholar 

  3. Bryan J (1990) International status of thermal error research (1990). CIRP Ann - Manuf Technol 39(2):645–656

    Article  MathSciNet  Google Scholar 

  4. Chew KK, Tomizuka M (1990) Steady-state and stochastic performance of a modified discrete-time prototype repetitive controller. J Dyn Syst Meas Control 112(1):35–41

    Article  MATH  Google Scholar 

  5. Chin JH, Lin TC (1997) Cross-coupled precompensation method for the contouring accuracy of computer numerically controlled machine tools. Int J Mach Tools Manuf 37(7):947–967

    Article  Google Scholar 

  6. Chin JH, Tsai HC (1993) A path algorithm for robotic machining. Robot Comput-Integr Manuf 10(3):185–198

    Article  Google Scholar 

  7. Chin JH, Cheng YM, Lin JH (2004) Improving contour accuracy by fuzzy-logic enhanced cross-coupled precompensation method. Robot Comput-Integr Manuf 20(1):65–76

    Article  Google Scholar 

  8. Haack B, Tomizuka M (1991) The effect of adding zeroes to feedforward controllers. J Dyn Syst Meas Control 113(1):6–10

    Article  Google Scholar 

  9. Huo F, Xi XC, Poo AN (2012) Generalized Taylor series expansion for free-form two-dimensional contour error compensation. Int J Mach Tools Manuf 53(1):91–99. doi:10.1016/j.ijmachtools.2011.10.001

    Article  Google Scholar 

  10. Jamaludin Z, Van Brussel H, Swevers J (2008) Quadrant glitch compensation using friction model-based feedforward and an inverse-model-based disturbance observer. In: 10th IEEE international workshop on advanced motion control. AMC ’08, pp 212–217

  11. Koren Y, Lo CC (1991) Variable-gain cross-coupling controller for contouring. CIRP Ann - Manuf Technol 40(1):371–374

    Article  Google Scholar 

  12. Koren Y, Lo CC (1992) Advanced controllers for feed drives. CIRP Ann - Manuf Technol 41(2):689–698

    Article  Google Scholar 

  13. Koren Y (1980) Cross-coupled biaxial computer control for manufacturing systems. J Dyn Syst Meas Control 102(4):265–272

    Article  MATH  Google Scholar 

  14. Koren Y (1997) Control of machine tools. J Manuf Sci Eng 119(4):749–755

    Article  Google Scholar 

  15. Lin RS, Lin TH (2010) Trajectory analyses for five-axis machine tools. In: IEEE conference on robotics automation and mechatronics (RAM), pp 136–141

  16. Lo CC (2002) A tool-path control scheme for five-axis machine tools. Int J Mach Tools Manuf 42(1):79–88. doi:10.1016/S0890-6955(01)00092-X

    Article  Google Scholar 

  17. Ni J, Wu SM (1993) An on-line measurement technique for machine volumetric error compensation. J Manuf Sci Eng 115:85–92

    Google Scholar 

  18. Ni J (1997) CNC machine accuracy enhancement through real-time error compensation. J Manuf Sci Eng 119(4):717–725

    Article  Google Scholar 

  19. Oya M, Hokari H, Tanura H (1987) A study on improvement of the accuracy of a three-coordinate measuring machine (a method of error correction). JSME Int J 30(260):344–349

    Article  Google Scholar 

  20. Pease W (1952) An automatic machine tool. Sci Am 187(3):101–115

    Article  MathSciNet  Google Scholar 

  21. Poo AN, Bollinger JG, Younkin GW (1972) Dynamic errors in type 1 contouring systems. IEEE Trans Ind Appl IA-8(4):477–484

    Article  Google Scholar 

  22. Poo AN, Lim KB, Ma YX (1996) Application of discrete learning control to a robotic manipulator. Robot Comput-Integr Manuf 12(1):55–64

    Article  Google Scholar 

  23. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review: Part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tools Manuf 40(9):1235–1256

    Article  Google Scholar 

  24. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review: Part II: thermal errors. Int J Mach Tools Manuf 40(9):1257–1284

    Article  Google Scholar 

  25. Rauch M, Xu X (2010) Five-axis machining: technologies and challenges. Int J Manuf Res 5(3):327–352. doi:10.1504/IJMR.2010.03347

    Article  Google Scholar 

  26. Sencer B, Altintas Y, Croft E (2009) Modeling and control of contouring errors for five-axis machine tools—part I: modeling. J Manuf Sci Eng 131(3):031,006

    Article  Google Scholar 

  27. Shih YT, Chen CS, Lee AC (2002) A novel cross-coupling control design for bi-axis motion. Int J Mach Tools Manuf 42(14):1539–1548

    Article  Google Scholar 

  28. Tarng YS, Kao JY, Lin YS (1997) Identification of and compensation for backlash on the contouring accuracy of CNC machining centres. Int J Adv Manuf Technol 13(2):77–85

    Article  Google Scholar 

  29. Taso TC, Tomizuka M (1988) Adaptive and repetitive control algorithms for noncircular machining. In: Proceedings of the 1988 American control conference, pp 115–120

  30. Tomizuka M, Hu JS, Chiu TC, Kamano T (1992) Synchronization of two motion control axes under adaptive feedforward control. J Dyn Syst Meas Control 114(2):196–203

    Article  MATH  Google Scholar 

  31. Tomizuka M (1987) Zero phase error tracking algorithm for digital control. J Dyn Syst Meas Control 109(1):65–68

    Article  MATH  Google Scholar 

  32. Torfs D, Schutter JD, Swevers J (1992) Extended bandwidth zero phase error tracking control of nonminimal phase systems. J Dyn Syst Meas Control 114(3):347–351

    Article  Google Scholar 

  33. Venugopal R (1985) Thermal effects on the accuracy of numerically controlled machine tools. PhD thesis, Purdue University

  34. Wahyudi, Tijani IB (2008) Friction compensation for motion control system using multilayer feedforward network. In: 5th international symposium on mechatronics and its applications. ISMA 2008, pp 1–6

  35. Wang L, Lin S, Zheng H (2011) Precision contour control of XY table based on lugre model friction compensation. In: 2nd international conference on intelligent control and information processing (ICICIP), vol 2, pp 1124–1128

  36. Weck M, Ye G (1990) Sharp corner tracking using the IKF control strategy. CIRP Ann - Manuf Technol 39(1):437–441

    Article  Google Scholar 

  37. Xi XC, Poo AN, Chou SK (2005) Factors affecting contour errors in CNC systems. In: Proceedings of 2005 9th international conference on mechatronics technology. Kuala Lumpur, Malaysia

  38. Xi XC, Poo AN, Hong GS (2008) Taylor series expansion error compensation for a bi-axial CNC machine. In: 2008 IEEE international conference on systems, man and cybernetics, SMC 2008, 12 October–15 October 2008. Institute of Electrical and Electronics Engineers Inc., Singapore, pp 1614–1619

  39. Xi XC, Poo AN, Hong GS (2009) Improving contouring accuracy by tuning gains for a bi-axial CNC machine. Int J Mach Tools Manuf 49(5):395–406

    Article  Google Scholar 

  40. Xi XC, Hong GS, Poo AN (2010) Improving CNC contouring accuracy by integral sliding mode control. Mechatronics 20(4):442–452

    Article  Google Scholar 

  41. Xi XC, Poo AN, Hong GS (2010) Tracking error-based static friction compensation for a bi-axial cnc machine. Precis Eng 34(3):480–488

    Article  Google Scholar 

  42. Xi XC, Poo AN, Hong GS, Huo F (2011) Experimental implementation of Taylor series expansion error compensation on a bi-axial CNC machine. Int J Adv Manuf Technol 53:285–299

    Article  Google Scholar 

  43. Yeh SS, Hsu PL (2004) Perfectly matched feedback control and its integrated design for multiaxis motion systems. J Dyn Syst Meas Control 126(3):547–557

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Huo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huo, F., Poo, AN. Precision contouring control of machine tools. Int J Adv Manuf Technol 64, 319–333 (2013). https://doi.org/10.1007/s00170-012-4015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4015-5

Keywords

Navigation