Active spindle system for a rotary planing machine

Abstract

This paper presents the experimental validation of an active control approach to improve the damping of a spindle system for wood machining. The active control was implemented using piezoelectric actuators in push–pull configuration with real-time control capabilities. The adaptive control strategy based on the linear quadratic Gaussian is first modeled within MATLAB/Simulink and then implemented on the real spindle system. Experimental tests were performed on the small-scale planer prototype to validate the simulation models. Moreover a cutting force observer which can be used to continuously monitor the cutting process is also implemented and its performance is presented.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Altintas Y, Weck M (2004) Chatter stability of metal cutting and grinding. CIRP Annals–Manufacturing. Technology 53(2):619–642

    Google Scholar 

  2. 2.

    Brecher C, Essera M, Witta S (2009) Interaction of manufacturing process and machine tool. CIRP Annals–Manufacturing. Technology 58(2):588–607

    Google Scholar 

  3. 3.

    Abele E, Altintas Y, Brecher C (2010) Machine tool spindle units. CIRP Annals–Manufacturing. Technology 59(2):781–802

    Google Scholar 

  4. 4.

    Hynek P (2004) Wood surface form improvement by real time displacement of tool trajectory. Ph.D. Thesis, Loughborough University, England

  5. 5.

    Parkin RM, Jackson MR (1996) Mechatronic approach for analyzing timber surfaces. Math Comput Simul 41(5–6):445–450

    Article  Google Scholar 

  6. 6.

    Jackson MR, Parkin RM, Brown N (2002) Waves on wood. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 216(4):475–497

    Article  Google Scholar 

  7. 7.

    Sims WL (1985) Two Hundred Years of history and evolution of woodworking machinery. Walders, England

    Google Scholar 

  8. 8.

    Chen Y, Wang XG, Sun C, Devine F, De Silva CV (2003) Active vibration control with state feedback in woodcutting. J Vib Control 9(6):645–664

    Article  Google Scholar 

  9. 9.

    Lin RR, Palazzolo AB, Kascak AF, Montague GT (1993) Electromechanical simulation and testing of actively controlled rotor dynamic systems with piezoelectric actuators. Journal of Engineering for Gas Turbines and Power, Transactions of the ASME 115:324–335

    Article  Google Scholar 

  10. 10.

    Barrett TS, Palazzolo AB, Kascak AF (1995) Active vibration control of rotating machinery using piezoelectric actuators incorporating flexible casing effects. Journal of Engineering for Gas Turbines and Power Transactions of the ASME 117:176–187

    Article  Google Scholar 

  11. 11.

    Simoes R, Steffen VJ, Hagopian JD, Mahfoud J (2007) Modal active vibration control of a rotor using piezoelectric stack actuators. J Vib Control 13(1):45–64

    MATH  Article  Google Scholar 

  12. 12.

    Dohner JL, Lauffer JP, Hinnerichs TD, Shankar N, Regelbrugge ME, Kwan CM, Xu R, Winterbauer B, Bridger K (2004) Mitigation of chatter instabilities in milling by active structural control. Journal of Sound and Vibration 269(1–2):197–211

    Article  Google Scholar 

  13. 13.

    Cao Y, Altintas Y (2007) Modeling of spindle bearing and machine tool systems for virtual simulation of milling operations. Int J Mach Tool Manuf 47(9):342–1350

    Article  Google Scholar 

  14. 14.

    Kolar P, Sulitka M, Janota M (2010) Simulation of dynamic properties of a spindle and tool system coupled with a machine tool frame. Int J Adv Manuf Technol 54(1–4):11–20

    Google Scholar 

  15. 15.

    Devos S (2006) Development of fast, stiff and high-resolution piezoelectric motors with integrated bearing-driving functionality. PhD thesis, KU Leuven

  16. 16.

    Ewins DJ (2000) Modal testing, theory practice and application, 2nd edn. Research Studies, England

    Google Scholar 

  17. 17.

    Albertelli P, Cau N, Bianchi G, Monno M (2011) The effect of dynamic interaction between machine tool subsystems on cutting process stability. Int J Adv Manuf Technol. doi:10.1007/s00170-011-3465-5

  18. 18.

    Bolzernm P, Scattolini R, Schiavoni N (2008) Fondamenti di controlli automatici, 3rd edn. McGraw-Hill, Italy

    Google Scholar 

  19. 19.

    Preumont A (2002) Vibration control of active structures, an introduction, 2nd edn. Kluwer, Dordretch

    Google Scholar 

  20. 20.

    Huang S, Tan KK, Hong GS, Wong YS (2007) Cutting force control of milling machine. Mechatronics 17(10):533–541

    Article  Google Scholar 

  21. 21.

    Altintas Y, Park SS (2004) Dynamic Compensation of Spindle Integrated Force Sensors. CIRP Annals–Manufacturing. Technology 53(1):305–308

    Google Scholar 

  22. 22.

    Albrecht A, Park SS, Altintas Y, Pritschow G (2005) High frequency bandwidth cutting force measurements in milling using capacitance displacement sensors. International Journal of Machine Tool and Manufacture 45(9):993–1008

    Article  Google Scholar 

  23. 23.

    Farrar CR, Doebling SW, Cornwell PJ (1998) A comparison study of modal parameter confidence intervals computed using the monte carlo and bootstrap techniques. Proceedings of 16th IMAC, Santa Barbara, California:936-944

  24. 24.

    Ho CC, Ma CK (2007) Active vibration control of structural systems by a combination of linear quadratic Gaussian and input estimation approaches. Journal of Sound and Vibration 301(3–5):429–449

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Albertelli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Albertelli, P., Elmas, S., Jackson, M.R. et al. Active spindle system for a rotary planing machine. Int J Adv Manuf Technol 63, 1021–1034 (2012). https://doi.org/10.1007/s00170-012-3983-9

Download citation

Keywords

  • Active vibration control
  • Spindle modeling
  • Mechatronics
  • Wood working
  • Planing machine