Skip to main content
Log in

Optimal design of machines processing pipeline parts

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Pipelines are widely used in transport systems and public utilities and infrastructures. To produce their components, specially designed multi-positional machines are employed. Since the cost of the equipment used affects the cost of final pipelines, the design of such machines is an important financial issue. This paper presents such a design problem formulated as a combinatorial optimization problem. Two mathematical models and an efficient solution approach are suggested. Industrial examples are also considered in order to demonstrate the use of the method developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cafaro D, Cerdá J (2008) Dynamic scheduling of multiproduct pipelines with multiple delivery due dates. Comput Chem Eng 32(4–5):728–753

    Article  Google Scholar 

  2. Orban-Mihalyko E, Lakatos B (2005) Sizing of pipeline capacities in processing systems under stochastic operation conditions. Comput Chem Eng 29(7):1599–1612

    Article  Google Scholar 

  3. Chebouba A, Yalaoui F, Smati A, Amodeo L, Younsi K, Tairi A (2009) Optimization of natural gas pipeline transportation using ant colony optimization. Comput Oper Res 36(6):1916–1923

    Article  MATH  Google Scholar 

  4. Usubamatov R, Abdulmuin M, Nor A, Murad M (2008) Productivity rate of rotor-type automated lines and optimization of their structure. Proc Inst Mech Eng B J Eng Manuf 222(11):1561–1566

    Article  Google Scholar 

  5. Battini D, Faccio M, Ferrari E, Persona A, Sgarbossa F (2007) Design configuration for a mixed-model assembly system in case of low product demand. Int J Adv Manuf Technol 34(1):188–200

    Article  Google Scholar 

  6. Dolgui A, Guschinsky N, Levin G (2009) Graph approach for optimal design of transfer machine with rotary table. Int J Prod Res 47(2):321–341

    Article  MathSciNet  Google Scholar 

  7. Wu B, Young G, Huang T (2000) Application of a two-level optimization process to conceptual structural design of a machine tool. Int J Mach Tools Manuf 40(6):783–794

    Article  Google Scholar 

  8. Xu L, Li Z, Li S, Tang F (2005) A polychromatic sets approach to the conceptual design of machine tools. Int J Prod Res 43(12):2397–2421

    Article  MATH  Google Scholar 

  9. Contini P, Tolio T (2004) Computer-aided set-up planning for machining centres configuration. Int J Prod Res 42(17):3473–3491

    Article  Google Scholar 

  10. Koren Y, Heisel U, Jovane F, Moriwaki T, Pritchow G, Brussel HV, Ulsoy A (1999) Reconfigurable manufacturing systems. CIRP Ann 48(2):527–598

    Article  Google Scholar 

  11. Mehrabi M, Ulsoy A, Koren Y (2000) Reconfigurable manufacturing systems: key to future manufacturing. J Intell Manuf 11:403–419

    Article  Google Scholar 

  12. Mehrabi M, Ulsoy A, Koren Y, Heytler P (2002) Trends and perspectives in flexible and reconfigurable manufacturing systems. J Intell Manuf 13:135–146

    Article  Google Scholar 

  13. Abdi M, Labib A (2003) A design strategy for reconfigurable manufacturing systems (RMSs) using analytical hierarchical process (AHP): a case study. Int J Prod Res 41(10):2273–2299

    Article  Google Scholar 

  14. Youssef A, ElMaraghy H (2008) Availability consideration in the optimal selection of multiple-aspect RMS configurations. Int J Prod Res 46(21):5849–5882

    Article  MATH  Google Scholar 

  15. Liu W, Liang M (2008) Multi-objective design optimization of reconfigurable machine tools: a modified fuzzy-Chebyshev programming approach. Int J Prod Res 46(6):1587–1618

    Article  MATH  Google Scholar 

  16. Guschinskaya O, Dolgui A, Guschinsky N, Levin G (2007) A scheduling problem for multi-spindle head machines with a mobile table. Comput Oper Res 36(2):344–357

    Article  MathSciNet  Google Scholar 

  17. Guschinskaya O, Dolgui A (2009) A comprehensive comparative analysis of exact and heuristic methods for transfer line balancing problems. Int J Prod Econ 120(2):276–286

    Article  MathSciNet  Google Scholar 

  18. Essafi M, Delorme X, Dolgui A, Guschinskaya O (2010) A MIP approach for balancing transfer lines with complex industrial constraints. Comput Ind Eng 58(3):393–400

    Article  Google Scholar 

  19. Guschinskaya O, Gurevsky E, Dolgui A, Eremeev A (2011) Metaheuristic approaches for the design of machining lines. Int J Adv Manuf Technol 55(1):11–22

    Article  Google Scholar 

  20. Hitomi K (1996) Manufacturing systems engineering. Taylor & Francis. London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Battaïa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battaïa, O., Dolgui, A., Guschinsky, N. et al. Optimal design of machines processing pipeline parts. Int J Adv Manuf Technol 63, 963–973 (2012). https://doi.org/10.1007/s00170-012-3981-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-3981-y

Keywords

Navigation