Skip to main content
Log in

Mist-jetting electrical discharge dressing (MEDD) of nonmetal bond diamond grinding wheels using conductive coating

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Diamond wheels are widely used in high-precision grinding of hard and brittle materials; unfortunately, they are difficult to true and dress. This paper addresses that problem in that it proposes an effective dressing technique—mist-jetting electrical discharge dressing (MEDD) of nonmetal bond diamond grinding wheels using conductive coating. A conductive phase is coated on the wheel surface to increase the conductivity of the nonmetal bond. Electrical discharge model was built to analyze feasibility and select optimized parameters of MEDD. Experiments were conducted to evaluate the dressing performance of MEDD in terms of surface morphology of the wheel surface, grinding force, and surface roughness of the workpiece. Experimental results show that abrasive grains on the wheel protrude are satisfied. The discharge parameters have an important influence on the dressing result. The grinding force and the surface roughness of the workpiece significantly reduced after dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhaskar P, Chattopadhyay AK, Chattopadhyay AB (2010) Development and performance evaluation of monolayer brazed cBN grinding wheel on bearing steel. Int J Adv Manuf Technol 48:935–944

    Article  Google Scholar 

  2. Sanchez JA, Ortega N, Luis LN, Lopez de Lacalle LN, Lamikiz A, Marañon JA (2005) Analysis of the elecro-discharge dressing (EDD) process of large-grit size CBN grinding wheel. Int J Adv Manuf Technol 29:688–694

    Article  Google Scholar 

  3. Kim JD, Lee ES (1996) A study of mirror-like grinding of fine ceramics with in-process electrolytic dressing. Int J Adv Manuf Technol 12:246–254

    Article  Google Scholar 

  4. Kim JD, Lee ES, Choi JY (2005) A study on the development of in-process dressing lapping wheel and its evaluation of machining characteristics. Int J Adv Manuf Technol 26:211–218

    Article  Google Scholar 

  5. Maksoud TMA, Mokbel AA, Morgan JE (1997) In-process detection of grinding wheel truing and dressing conditions using a flapper nozzle arrangement. Proc IME B J Eng Manufact 221(5):335–343

    Article  Google Scholar 

  6. Xie J, Tamaki J (2008) Computer simulation of sub-micron-scale precision truing of a metal-bonded diamond grinding wheel. Int J Mach Tools Manuf 46:333–342

    Google Scholar 

  7. Yung KC, Chen GY, Li LJ (2003) The laser dressing of resin-bonded CBN wheels by a Q-switched Nd: YAG laser. Int J Adv Manuf Technol 22:541–546

    Article  Google Scholar 

  8. Hosokawa A, Ueda T, Yunoki T (2006) Laser dressing of metal bonded diamond wheel. Ann CIRP 55:329–332

    Article  Google Scholar 

  9. Wang XK, Ying BG, Liu WG (1996) EDM dressing of fine grain super abrasive grinding wheel. J Mater Process Technol 62:299–302

    Article  Google Scholar 

  10. Sanchez JA, Pombo I, Cabanes I, Ortiz R, Lopez de Lacalle LN (2008) Electrical discharge truing of metal-bonded CBN wheels using single-point electrode. Int J Mach Tools Manuf 48:362–370

    Article  Google Scholar 

  11. Cai LR, Jia Y, Hu DJ (2008) Dressing of metal-bonded superabrasive grinding wheels by means of mist-jetting electrical discharge technology. J Mater Process Technol 209:779–784

    Google Scholar 

  12. Brian KR, Albert JS, Ronald OS, Jeffery LA, Darryl JG, Marion BG (2002) Wire electrical discharge machining of metal bond diamond wheels for ceramic grinding. Int J Mach Tools Manuf 42:1355–1362

    Article  Google Scholar 

  13. Weingärtner E, Sa J, Kuster F, Wegener K (2010) On-machine wire electrical discharge dressing (WEDD) of metal-bonded grinding wheels. Int J Adv Manuf Technol 49:1001–1007

    Article  Google Scholar 

  14. Brian KR, Albert JS, Ronald OS, Ronald O, Samuel M (2002) Wear mechanism of metal bond diamond wheels trued by wire electrical discharge machining. Wear 252:644–653

    Article  Google Scholar 

  15. Raffles MH, Stephenson DJ, Shore P, Jin T (2011) Electrolytic in-process dressing superfinishing of spherical bearings using metal-resin bond ultra-fine CBN wheels. Proc IME B J Eng Manufact 225:112–122

    Google Scholar 

  16. Ohmori H, Nakagawa T (1990) Mirror surface grinding of silicon wafers with electrolytic in-process. Ann CIRP 39(1):329–332

    Article  Google Scholar 

  17. Indraneel B, Kumar AS, Rahman M (2010) Experimental study of wheel wear in electrolytic in-process dressing and grinding. Int J Adv Manuf Technol 50:931–940

    Article  Google Scholar 

  18. Tanveer S, Indraneel B, Rahman M (2010) Efficient dressing of the wheel in ELID grinding by controllable voltage with force feed back. Int J Adv Manuf Technol 46:123–130

    Article  Google Scholar 

  19. Wang Y, Zhou XJ, Hu DJ (2006) An experimental investigation of dry-electrical discharge assisted truing and dressing of metal bonded diamond wheel. Int J Mach Tools Manuf 46:334–343

    Google Scholar 

  20. Lee ES (2000) The effect of optimum in-process electrolytic dressing in the ultraprecision grinding of die steel by a superabrasive wheel. Int J Adv Manuf Technol 16:814–821

    Article  Google Scholar 

  21. Eubank PT, Patel MR, Barrufet MA (1989) Theoretical models of the electrical discharge machining process I. A simple cathode erosion model. J Appl Phys 66(9):4095–4103

    Article  Google Scholar 

  22. Patel MR, Barrufet MA, Eubank PT (1989) Theoretical models of the electrical discharge machining process. II. The anode erosion model. J Appl Phys 66(9):4104–4111

    Article  Google Scholar 

  23. Kansal HK, Singh S, Kumar P (2008) Numerical simulation of powder mixed electric discharge machining (PMEDM) using finite element method. J Math Comp Model 47(11–12):1217–1237

    Article  MATH  Google Scholar 

  24. Kadish A (1992) Parametric analysis of a surface electrical discharge model. J Appl Phys 71(12):5806–5819

    Article  Google Scholar 

  25. Shabgard MR, Shotorbani RM (2009) Mathematical modeling of machining parameters in electrical discharge machining of FW4 welded steel. J World Acad Sci Eng Technol 52:404–409

    Google Scholar 

  26. Marafon J, Chousal JAG (2006) A finite element model of EDM based on the Joule effect. Int J Mach Tools Manuf 46(6):595–602

    Article  Google Scholar 

  27. Joshi SN, Pande SS (2011) Intelligent process modeling and optimization of die-sinking electric discharge machining. Int J Appl Soft Comput 11(2):2743–2755

    Article  Google Scholar 

  28. Das S, Klotz M, Klocke F (2003) EDM simulation: finite element-based calculation of deformation, microstructure and residual stresses. J Mater Process Technol 142(2):434–451

    Article  Google Scholar 

  29. Vinod Y, Jian VK, Dixit PM (2004) Theoretical analysis of thermal stresses in electro-discharge diamond grinding. J Mach Sci Technol 8(1):119–140

    Article  Google Scholar 

  30. Yeo SH, Kurnia W, Tan PC (2008) Critical assessment and numerical comparison of electro-thermal models in EDM. J Mach Sci Technol 203(1–3):241–251

    Google Scholar 

  31. Zhao WS (2003) Advanced electrical discharge machining technology. National Defence Industry Press, Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M., Li, D., Hu, D. et al. Mist-jetting electrical discharge dressing (MEDD) of nonmetal bond diamond grinding wheels using conductive coating. Int J Adv Manuf Technol 63, 955–961 (2012). https://doi.org/10.1007/s00170-012-3963-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-3963-0

Keywords

Navigation