Skip to main content

Fidelity of soft nano-imprint lithographic replication of polymer masters fabricated by two-photon polymerization

Abstract

Using modern laser fabrication techniques such as two-photon polymerisation (2PP), complex 3D and planar structures with the resolutions down to 100 nm can be achieved. Advantages of 2PP can be exploited by combining it with the nano-imprint lithography (NIL). We report on the fabrication of masters by 2PP and its replicas by the soft NIL technique using poly(dimethylsiloxane) (PDMS). With PDMS stamps, very reproducible replicas of the master can be created. The stamp surface quality can be better than that of the master due to hydrostatic pressure during the stamp fabrication. Putting the stamp under stress allows the fabrication of structures with controllable reduction of the structural dimensions in one direction compared to the original master. Experimental investigations of the shape transfer fidelity and surface roughness of the replicas are presented.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Serbin J, Ovsianikov A, Chichkov BN (2004) Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties. Opt Express 12:5221–5228. doi:10.1364/OPEX.12.005221

    Article  Google Scholar 

  2. 2.

    Anderson JR, Chiu DT, Jackman RJ, Cherniavskaya O, McDonald JC, Wu H, Whitesides SH, Whitesides GM (2000) Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal Chem 72:3158–3164. doi:10.1021/ac9912294

    Article  Google Scholar 

  3. 3.

    Ali M, Wagner T, Shakoor M, Molian PA (2008) Review of laser nanomachining. J Laser Appl 20:169–184

    Article  Google Scholar 

  4. 4.

    Maruo S, Fourkas JT (2008) Recent progress in multiphoton microfabrication. Laser Photon Rev 2:100–111. doi:10.1002/lpor.200710039

    Article  Google Scholar 

  5. 5.

    Guo LJ (2004) Recent progress in nanoimprint technology and its applications. J Phys D: Appl Phys 37:R123–R141. doi:10.1088/0022-3727/37/11/R01

    Article  Google Scholar 

  6. 6.

    Chou SY, Krauss PR, Zhang W, Guo L, Zhuang L (1997) Sub-10 nm imprint lithography and applications. J Vac Sci Technol B 15:2897–2904

    Article  Google Scholar 

  7. 7.

    Venkatakrishnan K, Jariwala S, Tan B (2009) Maskless fabrication of nano-fluidic channels by two-photon absorption (TPA) polymerization of SU-8 on glass substrate. Opt Express 17:2756–2762

    Article  Google Scholar 

  8. 8.

    Wu D, Chen Q-D, Niu L-G, Wang J-N, Wang J, Wang R, Xia H, Sun H-B (2009) Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices. Lab Chip 9:2391–2394. doi:10.1039/B902159K

    Article  Google Scholar 

  9. 9.

    Jariwala S, Venkatakrishnan K, Tan B (2010) Single step self-enclosed fluidic channels via two photon absorption (TPA) polymerization. Opt Express 18:1630–1636

    Article  Google Scholar 

  10. 10.

    Serbin J, Egbert A, Ostendorf A, Chichkov BN, Houbertz R, Domann G, Schulz J, Cronauer C, Frohlich L, Popall M (2003) Femtosecond laser-induced two-photon polymerization of inorganic organic hybrid materials for applications in photonics. Opt Lett 28:301–303

    Article  Google Scholar 

  11. 11.

    Haske W, Chen VW, Hales JM, Dong W, Barlow S, Marder SR, Perry JW (2007) 65 nm feature sizes using visible wavelength 3-D multiphoton lithography. Opt Express 15:3426–3436

    Article  Google Scholar 

  12. 12.

    Fischer J, von Freymann G, Wegener M (2010) The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv Mater 22:3578–3582. doi:10.1002/adma.201000892

    Article  Google Scholar 

  13. 13.

    Fischer J, Wegener M (2011) Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy. Opt Mat Express 1:614–624

    Article  Google Scholar 

  14. 14.

    Holmgaard T, Bozhevolnyi SI (2008) Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: excitation and characterization. Appl Phys Lett 92:011124. doi:10.1063/1.2825588

    Article  Google Scholar 

  15. 15.

    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings, 1st edn. Springer, Berlin

    Google Scholar 

  16. 16.

    Ovsianikov A, Gaidukeviciute A, Chichkov BN, Oubaha M, MacCraith BD, Sakellari I, Giakoumaki A, Gray D, Vamvakaki M, Farsari M, Fotakis C (2008) Two-photon polymerization of hybrid sol-gel materials for photonics applications. Laser Chem 2008:493059. doi:10.1155/2008/493059

    Article  Google Scholar 

  17. 17.

    Ovsianikov A, Viertl J, Chichkov B, Oubaha M, MacCraith B, Sakellari I, Giakoumaki A, Gray D, Vamvakaki M, Farsari M, Fotakis C (2008) Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2:2257–2262. doi:10.1021/nn800451w

    Article  Google Scholar 

  18. 18.

    Ono M, Lange D, Brand O, Hagleitner C, Baltes H (2002) A complementary-metal-oxide-semiconductor-field-effect-transistor-compatible atomic force microscopy tip fabrication process and integrated atomic force microscopy cantilevers fabricated with this process. Ultramicroscopy 91:9–20. doi:10.1016/S0304-3991(02)00077-3

    Article  Google Scholar 

  19. 19.

    Schneider F, Fellner T, Wilde J, Wallrabe U, Micromech J (2008) Mechanical properties of silicones for MEMS. Microengineering 18(065008):9. doi:10.1088/0960-1317/18/6/065008

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roman Kiyan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ohrt, C., Acar, Y., Seidel, A. et al. Fidelity of soft nano-imprint lithographic replication of polymer masters fabricated by two-photon polymerization. Int J Adv Manuf Technol 63, 103–108 (2012). https://doi.org/10.1007/s00170-011-3888-z

Download citation

Keywords

  • Nano-imprint lithography
  • Two-photon polymerisation
  • Planar waveguides
  • PDMS