Advertisement

Nonlinear constrained optimal control problem: a PSO–GA-based discrete augmented Lagrangian approach

  • M. A. Rahim
  • Haris M. KhalidEmail author
  • Amar Khoukhi
Original Article

Abstract

This work deals with the optimal control problem which has been proposed to solve using the discrete augmented Lagrangian-based nonlinear programming approach. It is shown that this technique guarantees a satisfactory performance by minimizing the energy and maximizing the output. Further, a hybrid particle swarm and genetic algorithm-based approach is used to achieve the optimal value of Lagrange multipliers and required parameters. The designed scheme has been successfully tested through extensive simulation. The successful use of the proposed scheme encourages to other physical systems. The proposed scheme is evaluated extensively on a laboratory-scale coupled-tank system.

Keywords

Optimal control Augmented Lagrangian Nonlinear programming Particle swarm optimization Genetic algorithm Control of two-tank system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bemporad A, Morari M (1999) Control of systems integrating logic, dynamics and constraints. Automatica 35(3):407–427MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Avraam MP, Shah N, Pantelides CC (1998) Modelling and optimization of general hybrid systems in the continuous time domain. Comput Chem Eng 22(1):221–228CrossRefGoogle Scholar
  3. 3.
    Vassiliadis VS, Sargent RWH, Pantelides CC (1994) Solution of a class of multistage dynamic optimization problems. 1. Problems without path constraints. Ind Eng Chem Res 33:2111–2122CrossRefGoogle Scholar
  4. 4.
    Vassiliadis VS, Sargent RWH, Pantelides CC (1994) Solution of a class of multistage dynamic optimization problems. 2. Problems with path constraints. Ind Eng Chem Res 33:21231–2133Google Scholar
  5. 5.
    Ruban A (1997) Sensitivity coefficients for discontinuous dynamic systems. Comput Syst Sci Int 36(4):536–542zbMATHGoogle Scholar
  6. 6.
    Stoer J, Bulirsch R (1980) Introduction to numerical analysis. Springer, New YorkGoogle Scholar
  7. 7.
    Robinson S (1980) Strongly regular generalized equations. Math Oper Res 5(1):43–62MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Alt W (1990) Lagrange–Newton method for infinite dimensional optimization problems. Numer Funct Anal Optim 11(3–4):201–224MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Alt W (1991) Parametric programming with applications to optimal control and sequential quadratic programming. Mathematische Schriften 34(1):1–37Google Scholar
  10. 10.
    Alt W (1990) Stability of solutions and the Lagrange–Newton method for nonlinear optimization and optimal control problems. Habilitationsschrift, Universität Bayreuth, BayreuthGoogle Scholar
  11. 11.
    Alt W, Malanowski K (1993) The Lagrange–Newton method for nonlinear optimal control problems. Comput Optim Appl 2(1):77–100MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Khoukhi A, Baron L, Balazinski M (2008) Constrained multi-objective trajectory planning of parallel kinematic machine. Robot Comput-Integr Manuf 25:756–769CrossRefGoogle Scholar
  13. 13.
    Khoukhi A (2002) Dynamic modeling and optimal time-energy off-line programming for mobile robots, a cybernetic problem. Kybernetes 31(5–6):731–735MathSciNetCrossRefGoogle Scholar
  14. 14.
    Khoukhi A, Baron L, Balazinski M (2007) Constrained multi-objective off-line programming of parallel kinematic machines. Technical report, Ećole Polytechnique de Montreal, CDT-P2877-05, 70 ppGoogle Scholar
  15. 15.
    Jong K, Spears W (1989) Using genetic algorithms to solve NP-complete problems. In: Proceedings of the third international conference on genetic algorithms. Kaumann, WalthamGoogle Scholar
  16. 16.
    Goldberg D, Zakrzewski K, Sutton B, Gadient R, Chang C, Gallego P, Miller B, Cantu-Paz E (1997) Genetic algorithms: a bibliography. Illegal report no. 97011. Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, ChampaignGoogle Scholar
  17. 17.
    Miller BL, Goldberg DE (1996) Optimal sampling for genetic algorithms. In: Proceedings of the artificial neural networks in engineering (ANNIE ’96) conference 6. ASME, Fairfield, pp 291–297Google Scholar
  18. 18.
    Eberhart R, Shi Y (1998) Parameter selection in particle swarm optimisation. In: Evolutionary programming VII, pp 591–600Google Scholar
  19. 19.
    Shi Y, Eberhart R (1999) Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation, pp 1945–1950Google Scholar
  20. 20.
    Eberhart R, Shi Y (1998) Comparison between genetic algorithms and particle swarm optimization. Lect Notes Comput Sci 1447/1998:611–616CrossRefGoogle Scholar
  21. 21.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on natural networks, Perth, Australia, pp 1942–1945Google Scholar
  22. 22.
    Kennedy J, Eberhart R (2001) Swarm intelligence. Academic, San DiegoGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Faculty of Business AdministrationUniversity of New BrunswickFrederictonCanada
  2. 2.Department of Systems EngineeringKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations