Skip to main content
Log in

A high-accuracy trajectory following controller for pneumatic devices

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The use of pneumatic devices is widespread among different industrial fields, in tasks like handling or assembly. Pneumatic systems are low-cost, reliable, and compact solutions. However, its use is typically restricted to simple tasks due to the poor performance achieved in applications where accurate motion control is required. This paper presents a novel nonlinear controller, using neural network-based models, that allows the use of common industrial servopneumatic components in applications where fine trajectory following tasks is required. Furthermore, several experimental trials show that the system is highly robust to payload variation without any controller retuning. These results encourage the use of pneumatics actuators in a set of applications for which they have not been traditionally considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kagawa T, Tokashiki L, Fujita T (2000) Accurate positioning of a pneumatic servosystem with air bearings. In: Proc. of the Bath Workshop on Power Transmission and Motion Control, Bath, UK, 2000. pp 257–268

  2. Sorli M, Figliolini G, Almondo A (2010) Mechatronic model and experimental validation of a pneumatic servo-solenoid valve. ASME J Dyn Syst, Meas, Control 132(5):054503

    Article  Google Scholar 

  3. Richard E, Scavarda S (1996) Comparison between linear and nonlinear control of an electropneumatic servodrive. ASME J Dyn Syst, Meas, Control 118(2):245–252

    Article  MATH  Google Scholar 

  4. Thomasset D, Scavarda S, Sesmat S, Belgharbi M (1999) Analytical model of the flow stage of a pneumatic servo-distributor for simulation and nonlinear control. In: Proc. of the Sixth Scandinavian International Conference on Fluid Power Tampere, Finland, May 26–28 1999. pp 848–860

  5. Carneiro JF, Almeida FG (2006) Modeling Pneumatic Servovalves using Neural Networks. In: Proc. of the 2006 IEEE Conference on Computer Aided Control Systems Design, Munich, Germany, 2006. pp 790–795

  6. Carneiro JF, Almeida FG (2006) Pneumatic servovalve models using artificial neural networks. In: Johnston N, Edge K (eds) Proc. of the Bath Symposium on Power Transmission and Motion Control. Bath, UK, pp 195–208

    Google Scholar 

  7. Karnopp D (1985) Computer simulation of stick-slip friction in mechanical dynamic systems. ASME J Dyn Syst, Meas, Control 107(1):100–107

    Article  Google Scholar 

  8. Canudas de Wit C, Olsson H, Astrom K, Lischinsky P (1995) A new model for control of systems with friction. IEEE Transactions on Automatic Control 40(3):419–425

    Article  MathSciNet  MATH  Google Scholar 

  9. Swevers J, Al-Bender F, Ganseman CG, Prajogo T (2000) An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Transactions on Automatic Control 45(4):675–686

    Article  MathSciNet  MATH  Google Scholar 

  10. Richer E, Hurmuzlu Y (2000) A high performance pneumatic force actuator system: part I—nonlinear mathematical model. ASME J Dyn Syst, Meas, Control 122(3):416–425

    Article  Google Scholar 

  11. Carneiro JF, Almeida FG (2006) Reduced order thermodynamic models for servopneumatic actuator chambers. Proc Instn Mech Engrs, Part I, Journal of Systems and Control Engineering 220(4):301–314

    Article  Google Scholar 

  12. Najafi F, Morteza F, Saadat M (2009) Dynamic modelling of servo pneumatic actuators with cushioning. International Journal of Advance Manufacturing Technology 42(7–8):757–765

    Article  Google Scholar 

  13. Saleem A, Abdrabbo S, Tutunji T (2009) On-line identification and control of pneumatic servo drives via a mixed-reality environment. International Journal of Advanced Manufacturing Technology 40(5–6):518–530

    Article  Google Scholar 

  14. Takosoglu J, Dindorf R, Laski P (2010) Rapid prototyping of fuzzy controller pneumatic servo-system. International Journal of Advanced Manufacturing Systems 40(3–4):349–361

    Google Scholar 

  15. Pu J, Weston RH (1988) Motion control of pneumatic drives. Microprocessors and Microsystems 12(7):373–382

    Article  Google Scholar 

  16. Ionnidis I, Nguyen T (1986) Microcomputer-controlled servo-pneumatic drives. In: Seventh International Fluid Power Symposium, September 1986. pp 155–164

  17. Ning S, Bone G (2002) High Steady-State Accuracy Pneumatic Servo Positioning System with PVA/PV Control and Friction Compensation. In: Proc. of the 2002 IEEE International Conference on Robotics and Automation, Washington DC, USA, 2002. pp 2824–2829

  18. Isidori A (1995) Nonlinear control systems 3rd edn. Springer, New York

    Google Scholar 

  19. Slotine JJ, Li W (1991) Applied nonlinear control. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  20. Outbib R, Richard E (2000) State feedback stabilization of an electropneumatic system. ASME J Dyn Syst, Meas, Control 122(3):410–415

    Article  Google Scholar 

  21. Xiang F, Wikander J (2004) Block-oriented approximate feedback linearization for control of pneumatic actuator system. Control Engineering Practice 12(4):387–399

    Article  Google Scholar 

  22. Situm Z, Pavkovic D, Novakovic B (2004) Servo pneumatic position control using fuzzy PID gain scheduling. ASME J Dyn Syst, Meas, Control 126(2):376–387

    Article  Google Scholar 

  23. Taghizadeh M, Najafi F, Ghaffari A (2010) Multimodel PD-control of a pneumatic actuator under variable loads. Interntional Journal of Advanced Manufacturing Technologies 48:655–662

    Article  Google Scholar 

  24. Bobrow JE, Jabbari F (1991) Adaptive pneumatic force actuation and position control. ASME J Dyn Syst, Meas, Control 113(2):267–272

    Article  Google Scholar 

  25. Shih M-C, Shy-I T (1994) Pneumatic servo-cylinder position control by PID-self-tuning controller. Japan Society of Mechanical Engineers International Journal 37(3):565–572

    Google Scholar 

  26. Ferraresi C, Giruado P, Quaglia G (1994) Non-conventional adaptive control of a servopneumatic unit for vertical load positioning. In: Proc. of the 46th National Conference on Fluid Power, 1994. pp 319–333

  27. Richardson R, Plummer A, Brown M (2001) Self-tuning control of a low-friction pneumatic actuator under the influence of gravity. IEEE Transactions on Control Systems Technology 9(2):330–334

    Article  Google Scholar 

  28. Drakunov S, Hanchin GD, Su WC, Ozguner U (1997) Nonlinear control of a rodless pneumatic servoactuator, or sliding modes versus Coulomb friction. Automatica 33(7):1401–1408

    Article  MathSciNet  MATH  Google Scholar 

  29. Pandian S, Hayakawa Y, Kanazawa Y, Kamoyama Y, Kawamura S (1997) Practical design of a sliding mode controller for pneumatic actuators. ASME J Dyn Syst, Meas, Control 119(4):666–674

    Article  MATH  Google Scholar 

  30. Richer E, Hurmuzlu Y (2000) A high performance pneumatic force actuator system: part II—nonlinear controller design. ASME J Dyn Syst, Meas, Control 122(3):426–434

    Article  Google Scholar 

  31. Levant A (1993) Sliding order and sliding accuracy in sliding mode control. International Journal of Control 58(6):1247–1263

    Article  MathSciNet  MATH  Google Scholar 

  32. Smaoui M, Brun X, Thomasset D (2004) Robust Position Control of an Electropneumatic System Using Second Order Sliding Mode. In: Proc. of the 2004 IEEE International Symposium on Industrial Electronics, Ajaccio, France, 2004. pp 429–434

  33. Junbo S, Xiaoyan B, Ishida Y (1997) An application of MNN trained by MEKA for the position control of pneumatic cylinder. In: Proc. of the IEEE International Conference on Neural Networks, Houston, USA, 1997. pp 829–833

  34. Lee HK, Choi GS, Choi GH (2002) A study on tracking position control of pneumatic actuators. Mechatronics 12(6):813–831

    Article  MathSciNet  Google Scholar 

  35. Varseveld R, Bone GM (1997) Accurate position control of a pneumatic actuator using on/off solenoid valves. IEEE/ASME Transactions on Mechatronics 2(3):195–204

    Article  Google Scholar 

  36. Reina G, Giannoccaro NI, Gentile A (2002) Experimental tests on position control of a pneumatic actuator using on/off solenoid valves. In: Proc. of the IEEE International Conference on Industrial Technology, Bangkok, Thailand, 2002. pp 555–559

  37. Carneiro JF, Gomes de Almeida F (2011) Pneumatic servo valve models based on artificial neural networks. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 225(3):393–411. doi:10.1177/2041304110394498

    Article  Google Scholar 

  38. Noorgard M, Ravn O, Poulsen NK, Hansen LK (2003) Neural networks for modelling and control of dynamic systems: a practitioner’s handbook. Springer Verlag, London

    Google Scholar 

  39. Carneiro JF, Almeida FG (2007) Heat transfer evaluation on industrial pneumatic cylinders. Proc Instn Mech Engrs, Part I, Journal of Systems and Control Engineering 221(1):119–128

    Article  Google Scholar 

  40. Brun X, Thomasset D, Bideaux E (2002) Influence of the process design on the control strategy: application in electropneumatic field. Control Engineering Practice 10(7):727–735

    Article  Google Scholar 

  41. Barth EJ, Goldfarb M, Al-Dakkan KA (2003) Energy Saving Control for Pneumatic Servo Systems. In: Proc. of the 2003 IEEE/ASME International Conference on Advanced Mechatronics, Kobe, Japan, 2003. pp 284–289

  42. Carneiro JF, Almeida FG (2011) Vsc approach angle based boundary layer thickness: a new variation law and its stability proof. In: Accepted for publication on the 2011 Bath/ASME Symposium on Fluid Power and Motion Control, Arlington, VA, 2011.

  43. Ogata K (2001) Modern control engineering 4th edn. Prentice Hall,

  44. Schaumann R, Valkenburg MEV (2001) Design of analog filters. Oxford University Press, Inc., New York

    Google Scholar 

  45. Lopes AM, Almeida FG (2007) Acceleration-based force-impedance control of a six-dof parallel manipulator. Industrial Robot: An International Journal 34(5):386–399

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Falcão Carneiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carneiro, J.F., de Almeida, F.G. A high-accuracy trajectory following controller for pneumatic devices. Int J Adv Manuf Technol 61, 253–267 (2012). https://doi.org/10.1007/s00170-011-3695-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-011-3695-6

Keywords

Navigation