Skip to main content

Advertisement

Log in

An integrated simulated annealing-based method for robust multiresponse process optimisation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a generic optimisation methodology for the selection of optimal process parameters in multiresponse processes that consists of two stages: The first stage is based on a quality loss function and multivariate statistical methods in order to adequately present responses, uncorrelate and synthesise them into a single process performance measure; the second stage uses artificial neural networks to build a process model and a simulated annealing (SA) algorithm to find the optimal process parameter conditions. The initial point of the SA algorithm is generated in such a way as to improve the convergence to the actual global optimum. The most important SA algorithm parameters are varied to assess the algorithm’s robustness in terms of the effect of the algorithm setting on the quality of the final solution (optimal process parameters and the corresponding process performance measure). The results are benchmarked to genetic algorithm (GA) performance within the proposed methodology, and the quality of a final solution, the robustness of the optimisation algorithm, the speed of a convergence to the optimum and the computational time are evaluated. Four case studies are presented to illustrate the effectiveness of the proposed methodology in comparison to several commonly used approaches from the literature and also to the GA-based performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mukherjee I, Ray PK (2006) A review of optimization techniques in metal cutting processes. Computers and Industrial Engineering 50(1):15–34. doi:10.1016/j.cie.2005.10.00

    Article  Google Scholar 

  2. Taguchi G (1986) Introduction to quality engineering. Asian Productivity Organization, UNIPUB, New York

    Google Scholar 

  3. Antony J (2001) Simultaneous optimization of multiple quality characteristics in manufacturing processes using Taguchi’s quality loss function. Int J Adv Manuf Technol 17(2):134–138. doi:10.1007/s001700170201

    Article  Google Scholar 

  4. Yang C, Hung CW (2004) Optimising the thermoforming process of polymeric foams: an approach by using the Taguchi method and the utility concept. Int J Adv Manuf Technol 24(5–6):353–360. doi:10.1007/s00170-003-1591-4

    Article  Google Scholar 

  5. Tong L-I, Wang C-H, Chen H-C (2005) Optimization of multiple responses using principal component analysis and, technique for order preference by similarity to ideal solution. Int J Adv Manuf Technol 27(3–4):407–414. doi:10.1007/s00170-004-2157-9

    Article  Google Scholar 

  6. Liao HC (2003) Using PCR-TOPSIS to optimise Taguchi’s multi-response problem. Int J Adv Manuf Technol 22(9–10):649–655. doi:10.1007/s00170-002-1485-x

    Article  Google Scholar 

  7. Su CT, Tong LI (1997) Multi-response robust design by principal component analysis. Total Quality Management 8(6):409–416

    Article  Google Scholar 

  8. Fung CP, Kang PC (2005) Multi-response optimization in friction properties of PBT composites using Taguchi method and principle component analysis. Journal of Materials Processing Technology 170(3):602–610. doi:10.1016/j.jmatprotec.2005.06.040

    Article  Google Scholar 

  9. Liao HC (2006) Multi-response optimization using weighted principal component. Int J Adv Manuf Technol 27(7–8):720–725. doi:10.1007/s00170-004-2248-7

    Article  Google Scholar 

  10. Chang CS, Liao RC, Wen KL, Wang WP (2004) A grey-based Taguchi method to optimize design of muzzle flash restraint device. Int J Adv Manuf Technol 24(11–12):860–864. doi:10.1007/s00170-004-2066-y

    Article  Google Scholar 

  11. Lin CT, Chang CW, Chen CB (2006) A simple approach to solving multi-response quality characteristic problems in CMOS ion implantation. Int J Adv Manuf Technol 28(5–6):592–595. doi:10.1007/s00170-004-2396-9

    Article  Google Scholar 

  12. Wu CF (2002) Optimisation of multiple quality characteristics based on percentage reduction of Taguchi’s quality loss. Int J Adv Manuf Technol 20(10):749–753. doi:10.1007/s001700200233

    Article  Google Scholar 

  13. Govindaluri SM, Cho BR (2007) Robust design modeling with correlated quality characteristics using a multicriteria decision framework. Int J Adv Manuf Technol 32(5–6):423–433. doi:10.1007/s00170-005-0349-6

    Article  Google Scholar 

  14. Myers RH, Montgomery DC (2002) Response surface methodology: process and product optimization using designed experiments. Wiley, New York

    MATH  Google Scholar 

  15. Dhara SK, Kuar AS, Mitra S (2008) An artificial neural network approach on parametric optimization of laser micro-machining of die-steel. Int J Adv Manuf Technol 39(1–2):39–46. doi:10.1007/s00170-007-1199-1

    Article  Google Scholar 

  16. Hsu C-M, Su C-T, Liao D (2004) Simultaneous optimisation of the broadband tap coupler optical performance based on neural networks and exponential desirability functions. Int J Adv Manuf Technol 23(11–12):896–902. doi:10.1007/s00170-003-1733-8

    Google Scholar 

  17. Khoo LP, Chen CH (2001) Integration of response surface methodology with genetic algorithms. Int J Adv Manuf Technol 18(7):483–489. doi:10.1007/s0017010180483

    Article  Google Scholar 

  18. Hou T-H, Chen S-H, Lin T-Y, Huang K-M (2006) An integrated system for setting the optimal parameters in IC chip-package wire bonding processes. Int J Adv Manuf Technol 30(3–4):247–253. doi:10.1007/s00170-005-0083-0

    Article  Google Scholar 

  19. Tong KW, Kwong CK, Yu KM (2004) Process optimisation of transfer moulding for electronic packages using artificial neural networks and multiobjective optimisation techniques. Int J Adv Manuf Technol 24(9–10):675–685. doi:10.1007/s00170-003-1739-2

    Article  Google Scholar 

  20. Huang CC, Tang TT (2006) Parameter optimization in melt spinning by neural networks and genetic algorithms. Int J Adv Manuf Technol 27(1–2):1113–1118. doi:10.1007/s00170-004-2302-5

    Article  Google Scholar 

  21. Yu J-C, Chen X-X, Hung T-R, Thibault F (2004) Optimization of extrusion blow molding processes using soft computing and Taguchi’s method. Journal of Intelligent Manufacturing 15(5):625–634. doi:10.1023/B:JIMS.0000037712.33636.41

    Article  Google Scholar 

  22. Chen W-C, Fu G-L, Tai P-H, Deng W-J (2009) Process parameter optimization for MIMO plastic injection molding via soft computing. Expert Systems with Application 36(2):1114–1122. doi:10.1016/j.eswa.2007.10.020

    Article  Google Scholar 

  23. Sathiya P, Aravindan S, Noorul Haq A, Paneerselvam K (2009) Optimization of friction welding parameters using evolutionary computational techniques. Journal of Materials Processing Technology 209(5):2576–2584. doi:10.1016/j.jmatprotec.2008.06.030

    Article  Google Scholar 

  24. Chen H-C, Lin J-C, Yang Y-K, Tsai C-H (2010) Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach. Expert Systems with Applications 37(10):7147–7153. doi:10.1016/j.eswa.2010.04.020

    Article  Google Scholar 

  25. Yang S-H, Srinivas J, Mohan S, Lee D-M, Balaji S (2009) Optimization of electric discharge machining using simulated annealing. Journal of Materials Processing Technology 209(9):4471–4475. doi:10.1016/j.jmatprotec.2008.10.053

    Article  Google Scholar 

  26. Saravanan R, Asokan P, Vijayakumar K (2003) Machining parameters optimisation for turning cylindrical stock into a continuous finished profile using genetic algorithm (GA) and simulated annealing (SA). Int J Adv Manuf Technol 21:1–9

    Article  Google Scholar 

  27. Chang H-H (2008) A data mining approach to dynamic multiple responses in Taguchi experimental design. Expert Systems with Applications 35(3):1095–1103. doi:10.1016/j.eswa.2007.08.005

    Article  Google Scholar 

  28. Mukherjee I, Ray PK (2008) Optimal process design of two-stage multiple responses grinding processes using desirability functions and metaheuristic technique. Applied Soft Computing 8(1):402–421. doi:10.1016/j.asoc.2007.02.005

    Article  Google Scholar 

  29. Suresh RK, Mohanasundaram KM (2006) Pareto archived simulated annealing for job shop scheduling with multiple objectives. Int J Adv Manuf Technol 29:184–196. doi:10.1007/s00170-004-2492-x

    Article  Google Scholar 

  30. Ganesh K, Punniyamoorthy M (2005) Optimization of continuous-time production planning using hybrid genetic algorithms-simulated annealing. Int J Adv Manuf Technol 26:148–154. doi:10.1007/s00170-003-1976-4

    Article  Google Scholar 

  31. Nallakumarasamy G, Srinivasan PSS, Venkatesh RK, Malayalamurthi R (2011) Optimization of operation sequencing in CAPP using simulated annealing technique (SAT). Int J Adv Manuf Technol 54:721–728. doi:10.1007/s00170-010-2977-8

    Article  Google Scholar 

  32. Pandey V, Tiwari MK, Kumar S (2006) An interactive approach to solve the operation sequencing problem using simulated annealing. Int J Adv Manuf Technol 29:1212–1231. doi:10.1007/s00170-005-0007-z

    Article  Google Scholar 

  33. Arkat J, Saidi M, Abbasi B (2007) Applying simulated annealing to cellular manufacturing system design. Int J Adv Manuf Technol 32:531–536. doi:10.1007/s00170-005-0358-5

    Article  Google Scholar 

  34. Zhao F, Hong Y, Yu D, Yang Y, Zhang Q, Yi H (2007) A hybrid algorithm based on particle swarm optimization and simulated annealing to holon task allocation for holonic manufacturing system. Int J Adv Manuf Technol 32:1021–1032. doi:10.1007/s00170-006-0418-5

    Article  Google Scholar 

  35. Zandieh M, Amiri M, Vahdani B, Soltani R (2009) A robust parameter design for multi-response problems. Journal of Computational and Applied Mathematics 230(2):463–476. doi:10.1016/j.cam.2008.12.019

    Article  MathSciNet  MATH  Google Scholar 

  36. Sibalija T, Majstorovic V, Miljkovic Z (2011) An intelligent approach to robust multiresponse process design. Int J Prod Res 49(17):5079–5097. doi:10.1080/00207543.2010.511476

    Article  Google Scholar 

  37. Sibalija T, Petronic S, Majstorovic V, Prokic-Cvetkovic R, Milosavljevic A (2011) Multi-response design of Nd:YAG laser drilling of Ni-based superalloy sheets using Taguchi’s quality loss function, multivariate statistical methods and artificial intelligence. Int J Adv Manuf Technol 54:537–552. doi:10.1007/s00170-010-2945-3

    Article  Google Scholar 

  38. Sibalija T., Majstorovic V (2011) An integrated approach to optimise parameter design of multi-response processes based on Taguchi method and artificial intelligence. Journal of Intelligent Manufacturing. doi:10.1007/s10845-010-0451-y

  39. Šibalija T, Majstorović V, Soković M (2011) Taguchi-based and intelligent optimisation of a multi-response process using historical data. Strojniški vestnik—Journal of Mechanical Engineering 57(4):357–365. doi:10.5545/sv-jme.2010.061

  40. Spall J (2003) Introduction to stochastic search and optimisation. Wiley, New Jersey

    Book  Google Scholar 

  41. Sukthomya W, Tannock JDT (2005) Taguchi experimental design for manufacturing process optimization using historical data and neural network process model. International Journal of Quality & Reliability Management 22(5):485–502. doi:10.1108/02656710510598393

    Article  Google Scholar 

  42. Jeong B, Lee J, Cho H (2005) Efficient optimization of process parameters in shadow mask manufacturing using NNPLS and genetic algorithm. International Journal of Production Research 43(15):3209–3230. doi:10.1080/00958970500137167

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana V. Sibalija.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sibalija, T.V., Majstorovic, V.D. An integrated simulated annealing-based method for robust multiresponse process optimisation. Int J Adv Manuf Technol 59, 1227–1244 (2012). https://doi.org/10.1007/s00170-011-3572-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-011-3572-3

Keywords

Navigation