Advertisement

Optimization of springback for AZ31 magnesium alloy sheets in the L-bending process based on the Taguchi method

  • Chun-Chih Kuo
  • Bor-Tsuen LinEmail author
ORIGINAL ARTICLE

Abstract

Springback is a primary issue which is encountered during most sheet metal bending processes. Using the Taguchi method, this study investigates the springback of L-bending with a step in the die through simulation and experiments for AZ31 magnesium alloy sheets at different temperatures. The process parameters for bending springback in this study include: lower punch radius, die clearance, step height, and step distance; we use a Taguchi L9 orthogonal array to design the combinations for the experiments. The results of ANOVA analysis show that, for each bending temperature, the process parameters that affect springback occur in the following order: step height (greatest), lower punch radius (next), die clearance (smaller), and step distance (smallest). In addition, with the increase of the bending temperature, the angle of springback decreases. The optimal parameter combinations at each bending temperature from the signal-to-noise response are all the same, namely, a die radius of 2 mm, die clearance of 0.5 mm, step height of 0.1 mm, and step distance of 2 mm. When the bending temperatures are 100°C, 150°C, and 200°C, the angles after springback of the optimal experimental parameter combination are 91.06°, 90.63°, and 89.84°, respectively.

Keywords

L-bending Springback Taguchi method Magnesium alloy sheets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ramezani M, Ripin ZM, Ahmad R (2010) Modelling of kinetic friction in V-bending of ultra-high-strength sheets. Int J Adv Manuf Technol 46:101–110CrossRefGoogle Scholar
  2. 2.
    Fu Z, Mo J, Zhang W (2009) Study on multiple-step incremental air-bending forming of sheet metal with springback model and FEM simulation. Int J Adv Manuf Technol 45:448–458CrossRefGoogle Scholar
  3. 3.
    Bahloul R, Ayed LB, Potiron A, Batoz JL (2010) Comparison between three optimization methods for the minimization of maximum bending load and springback in wiping die bending obtained via an experimental approach. Int J Adv Manuf Technol 48:1185–1203CrossRefGoogle Scholar
  4. 4.
    Livatyali H, Altan T (2001) Prediction and elimination of springback in straight flanging using computer aided design methods, Part 1. Experimental investigations. J Mater Process Technol 117:262–268CrossRefGoogle Scholar
  5. 5.
    Gassara F, Hambli R, Bouraoui T, Halouani FE, Soulat D (2009) Optimization of springback in the L-bending process using a coupled Abaqus/Python algorithm. Int J Adv Manuf Technol 44:61–67CrossRefGoogle Scholar
  6. 6.
    Lepadatu D, Hambli R, Kobi A, Barreau A (2005) Optimization of springback in bending processes using FEM simulation and response surface method. Int J Adv Manuf Technol 27:40–47CrossRefGoogle Scholar
  7. 7.
    Ling YE, Lee HP, Cheok BT (2005) Finite element analysis of springback in L-bending of sheet metal. J Mater Process Technol 168:296–302CrossRefGoogle Scholar
  8. 8.
    Seo DG, Chang SH, Lee SM (2003) Springback characteristics of steel sheets for warm U-draw bending. Met Mater Int 9:497–501CrossRefGoogle Scholar
  9. 9.
    Yanagimoto J, Oyamada K (2008) Springback of high-strength steel after hot and warm sheet formings. Int J Adv Manuf Technol 37:649–656CrossRefGoogle Scholar
  10. 10.
    Chen FK, Huang TB (2003) Formability of stamping magnesium alloy AZ31 sheets. J Mater Process Technol 142:643–647CrossRefGoogle Scholar
  11. 11.
    Palaniswamy H, Ngaile G, Altan NT (2004) Finite element simulation of magnesium alloy sheet forming at elevated temperature. J Mater Process Technol 146:52–60CrossRefGoogle Scholar
  12. 12.
    Lin BT, Kuo CC (2009) Application of an integrated RE/RP/CAD/CAE/CAM system for magnesium alloy shell of mobile phone. J Mater Process Technol 209:2818–2830CrossRefGoogle Scholar
  13. 13.
    Chien WT, Hou SC (2007) Investigating the recast layer formed during the laser trepan drilling of Inconel 718 using the Taguchi method. Int J Adv Manuf Technol 33:308–316CrossRefGoogle Scholar
  14. 14.
    Kirby ED, Zhang Z, Chen JC, Chen J (2006) Optimizing surface finish in a turning operation using Taguchi parameter design method. Int J Adv Manuf Technol 30:1021–1029CrossRefGoogle Scholar
  15. 15.
    Hascalik A, Caydas U (2008) Optimization of turning parameters for surface roughness and tool life based on the Taguchi method. Int J Adv Manuf Technol 38:896–903CrossRefGoogle Scholar
  16. 16.
    Vijian P, Arunachalam VP (2007) Optimization of squeeze casting process parameters using Taguchi analysis. Int J Adv Manuf Technol 33:1122–1127CrossRefGoogle Scholar
  17. 17.
    Chen DC, Chen CF (2006) Using the Taguchi method to develop a robust design for the shape rolling of porous sectioned sheets. J Mater Process Technol 177:104–108CrossRefGoogle Scholar
  18. 18.
    Dubey AK, Yadava V (2008) Robust parameter design and multi-objective optimization of laser beam cutting for aluminum alloy sheets. Int J Adv Manuf Technol 38:268–277CrossRefGoogle Scholar
  19. 19.
    Jean MD, Wang JT (2006) Using a principal components analysis for developing a robust design of electron beam welding. Int J Adv Manuf Technol 28:882–889CrossRefGoogle Scholar
  20. 20.
    Lee HH (2008) Taguchi methods: principles and practices of quality design. Gau-Lih, TaipeiGoogle Scholar
  21. 21.
    Choi SC, Kim HY, Hong SM, Shin YS, Lee GH, Kim HJ (2009) Evaluation and prediction of the forming limit of AZ31 magnesium alloy sheets in a cross-shaped cup deep drawing process. Met Mater Int 15:575–584CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Institute of Engineering Science and TechnologyNational Kaohsiung First University of Science and TechnologyKaohsiungRepublic of China

Personalised recommendations