Skip to main content
Log in

Experimental milling moment model in orthogonal cutting condition: to an accurate energy balance

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The control of cutting energy parameters is essential to optimize the cutting condition during the milling process. Our previous works (Cahuc et al., Int J Adv Manuf Technol 18(9):648–656, 2001; Darnis et al. 2000) have shown the existence of the six components of the cutting mechanical actions. Thus, the influence of geometric and kinematic parameters on the six components must be quantified. Based on the experimental approach explained in our last works (Albert et al., 2008a, b), this study proposes an energetic criterion characterizing the cutting moment in orthogonal cutting condition. Then, the energy balance has to take into account the cutting moment, highlighting the utility of this criterion. Therefore, the cutting moment model proposed allows an accurate evaluation of the energy balance and the mechanical actions (forces and moments) applied to the workpiece. Consequently, the cutting parameters can be chosen in order to optimize the cutting power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert G, Cahuc O, Laheurte R, Darnis P (2007) Etude expérimentale de la coupe en fraisage. In: 18eme Cong. Franç. Méca. août, Grenoble

  2. Albert G, Cahuc O, Laheurte R, Darnis P, K’nevez JY (2008) Approche énergétique de la coupe en fraisage. In: 5eme Assises machine et usinage à grande vitesse. Nantes, France

  3. Albert G, Cahuc O, Laheurte R, Darnis P, K’nevez JY (2008) Experimental approach to develop a six components milling cutting mode. In: 16th int. conf. manuf. syst.—ICMa’S. Romania Academy of Sciences, Bucharest. pp 15–18

  4. Bissey S, Poulachon G, Lapujoulade F (2005) Intégration de la géométrie d’outil dans la prédiction des efforts de coupe en fraisage grande vitesse. Méc Ind 6:391–398

    Article  Google Scholar 

  5. Cahuc O, Darnis P, Gérard A, Battaglia JL (2001) Experimental and analytical balance sheet in turning applications. Int J Adv Manuf Technol 18(9):648–656

    Article  Google Scholar 

  6. Couétard Y 1 (2000) Caractérisation et étalonnage des dynamomètres à six composantes pour torseur associé à un système de forces. Thèse de Doctorat, Université Bordeaux

  7. Dargnat F (2006) Modélisation semi-analytique par approche énergétique du procédé de perçage de matériaux monotithiques. Thèse de Doctorat, Université Bordeaux 1

  8. Darnis P, Cahuc O, Couétard Y (2000) Energy balance with mechanical actions measurement during turning process. In: International CIRP seminar on improving machine tool performance. La Baule, France

    Google Scholar 

  9. Ding H, Chen SJ, Cheng K (2010) Two dimensional vibration-assisted micro-milling: kinematics simulation, chip thickness computation and analysis. Adv Mater Res 97(101):2779–2784

    Article  Google Scholar 

  10. Fontaine M, Devillez A, Moufki A, Dudzinski D (2006) Predictive force model for ball-end milling and experimental validation with a wavelike form machining test. Int J Mach Tools Manuf 46:367–380

    Article  Google Scholar 

  11. Garnier S (2000) Détermination de paramètres descriptifs de l’état d’usure d’outils pour le développement d’un système de surveillance automatique de l’usinage en fraisage. Thèse de Doctorat, Université de Nantes

  12. Garnier S, Furet B (2000) Identification of the specific coefficients to monitor the cutting process in milling. In: International CIRP seminar on improving machine tool performance. La Baule, France

  13. Laheurte R (2004) Application de la théorie du second gradient à la coupe des matériaux. Thèse de Doctorat, Université Bordeaux 1

  14. Laporte S (2005) Comportement et endommagement de l’outil en perçage à sec: application aux assemblages aéronautiques. Thèse de Doctorat, Université Bordeaux 1

  15. Lee P, Altintas Y (1996) Prediction of ball-end milling forces from orthogonal cutting data. Int J Mach Tools Manuf 36(9):1059–1072

    Article  Google Scholar 

  16. Martellotti ME (1941) An analysis of the milling process. Trans ASME 63:1667

    Google Scholar 

  17. Martellotti ME (1945) An analysis of the milling process. Part II: down milling. Trans ASME 67:233

    Google Scholar 

  18. Nuninger W, Peruquetti W, Richard JP (2006) Assessment and stakes of the friction models: joining tribology and control to achieve safety in transport. In: 5th European conference on braking, vol 2. Lille, France

    Google Scholar 

  19. Paris H, Delhez C (2000) Modelling cutting force in high-speed milling. In: International CIRP seminar on improving machine tool performance. La Baule, France

    Google Scholar 

  20. Poirier J (1993) Analyse de la variance et de la régression. Plans d’expérience. Tech Ing R260:1–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëtan Albert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albert, G., Laheurte, R., K’Nevez, JY. et al. Experimental milling moment model in orthogonal cutting condition: to an accurate energy balance. Int J Adv Manuf Technol 55, 843–854 (2011). https://doi.org/10.1007/s00170-010-3118-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-010-3118-0

Keywords

Navigation