Skip to main content
Log in

Modeling the machine configuration and line-balancing problem of a PCB assembly line with modular placement machines

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper studies the combined task of determining a favorable machine configuration and line balancing (MCLB) for an assembly line where a single type of printed circuit board is assembled by a set of interconnected, reconfigurable machine modules. The MCLB problem has been solved previously by heuristic methods. In the present work, we give a mathematical formulation for it and transform the model into a linear integer programming model that can be solved using a standard solver for problems of moderate size. The model determines the best machine configuration and allocation of components to the machine modules with the objective of minimizing the cycle time. Because the solutions found in this way are globally optimal, they can be used to evaluate the efficiency of previous heuristics designed for the MCLB problem. In our experiments, an evolutionary algorithm gave near optimal results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayob M, Kendall G (2008) A survey of surface mount device placement machine optimization: machine classification. Eur J Oper Res 186:893–914

    Article  Google Scholar 

  2. Yilmaz IO, Gunther HO, Jain S (2009) Simulation of mixed model PCB assembly lines with group setup and bypass conveyors. Int J Adv Manuf Technol 42(3–4):335–347

    Article  Google Scholar 

  3. Ho W, Ji P, Dey PK (2008) Optimization of PCB component placements for the collect-and-place machines. Int J Adv Manuf Technol 37:828–836

    Article  Google Scholar 

  4. Sze MT, Ji P, Lee WB (2001) Modeling component assignment problem in PCB assembly. Assem Autom 21:55–60

    Article  Google Scholar 

  5. Ashayeri J, Selen W (2007) A planning and scheduling model for onsertion in printed circuit board assembly. Eur J Oper Res 183:909–925

    Article  MATH  Google Scholar 

  6. Ball OM, Magazine MJ (1988) Sequencing of insertions in printed circuit board assembly. Oper Res 36(2):192–201

    Article  MathSciNet  Google Scholar 

  7. Leipälä T, Nevalainen O (1989) Optimization of the movements of a component placement machine. Eur J Oper Res 38:167–177

    Article  MATH  Google Scholar 

  8. Ji P, Sze MT, Lee WB (2001) A genetic algorithm of determining cycle time for printed circuit board assembly. Eur J Oper Res 128:175–184

    Article  MATH  Google Scholar 

  9. Ammons JC, Carlyle M, Granmer L, Depuy GW, Ellis KP, McGinnis LF, Tovey CA, Xu H (1997) Component allocation to balance workloads in printed circuit card assembly. IIE Trans 29:265–275

    Google Scholar 

  10. Grunow M, Gunther HO, Schleusener M, Yilmaz IO (2004) Operations planning for collect-and-place machines in PCB assembly. Comp Indust Eng 47:409–429

    Article  Google Scholar 

  11. Tirpak TM, Mohapatra PK, Nelson PC, Rajbhandari RR (2002) A generic classification and object-oriented simulation toolkit for SMT assembly equipment. IEEE Trans Syst Man Cybern Syst Hum 32(1):104–121

    Article  Google Scholar 

  12. Ahmadi RH, Wurgaft H (1994) Design for synchronized flow manufacturing. Manage Sci 40:1469–1483

    Article  MATH  Google Scholar 

  13. Toth A, Knuutila T, Nevalainen OS (2010) Reconfiguring flexible machine modules of a PCB assembly line. Prod Eng Res Dev 4(1):85–94

    Article  Google Scholar 

  14. Rong A, Toth A, Nevalainen O, Knuutila T, Lahdelma R (2009) PCB assembly line modeling with modular placement machines. Proceedings of the 2009 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM 2009), 1097–1101

  15. Gutjahr AL, Nemhauser GL (1964) An algorithm for the line balancing problem. Manage Sci 11:308–315

    Article  MathSciNet  Google Scholar 

  16. Baybars I (1986) A survey of exact algorithms for the simple assembly line balancing problem. Manage Sci 32:909–932

    Article  MATH  MathSciNet  Google Scholar 

  17. Becker C, Scholl A (2006) A survey on problems and methods in generalized assembly line balancing. Eur J Oper Res 168:694–715

    Article  MATH  MathSciNet  Google Scholar 

  18. Lapierre SD, Ruiz A, Soriano P (2006) Balancing assembly lines with tabu search. Eur J Oper Res 168:826–837

    Article  MATH  MathSciNet  Google Scholar 

  19. Amen M (2006) Cost-oriented assembly line balancing: model formulations, solution difficulty, upper and lower bounds. Eur J Oper Res 168:747–770

    Article  MATH  MathSciNet  Google Scholar 

  20. Scholl A, Becker C (2006) State-of-art exact and heuristic solution procedures for simple assembly line balancing. Eur J Oper Res 168:666–693

    Article  MATH  MathSciNet  Google Scholar 

  21. Lin WL, Tardif V (1999) Component partitioning under demand and capacity uncertainty in printed circuit board assembly. Int J Flex Manuf Syst 11:159–176

    Article  Google Scholar 

  22. Hiller MS, Brandeau ML (2001) Cost minimization and workload balancing in printed circuit board assembly. IIE Trans 33:547–557

    Google Scholar 

  23. Kodek DM, Krisper M (2004) Optimal algorithm for minimizing production cycle time of a printed circuit board assembly line. Int J Prod Res 42(23):5031–5048

    Article  MATH  Google Scholar 

  24. Lapierre SD, Debargis L, Soumis F (2000) Balancing printed board assembly line systems. Int J Prod Res 38(16):3899–3911

    Article  MATH  Google Scholar 

  25. Tazari S, Muller-Hannemann M, Weihe K (2006) Workload balance in multi-stage production processes. Lect Notes Comput Sci 4007:49–60

    Article  Google Scholar 

  26. Häyrinen T, Johsson M, Johtela T, Smed J, Nevalainen O (2000) Scheduling algorithms for computer-aided line balancing in printed circuit board assembly. Prod Plan Control 11:497–510

    Article  Google Scholar 

  27. Yildirim MB, Duman E, Duman D (2006) Dispatching rules for allocation of component types in automated assembly of printed circuit boards. Lect Notes Comput Sci 4263:55–64

    Article  Google Scholar 

  28. Choudhury ND, Wilhelm WE, Rao B, Gott J, Khotekar N (2007) Process planning for circuit card assembly on a series of dual head placement machines. Eur J Oper Res 182:626–639

    Article  MATH  Google Scholar 

  29. Kulak O, Yilmaz IO, Gunther HO (2008) GA-based solution approach for balancing printed circuit board assembly line. OR Spectr 30:469–491

    Article  MATH  MathSciNet  Google Scholar 

  30. Wan YF, Ji P (2001) A tabu search heuristic for the component assignment problem in PCB assembly. Assem Autom 21(3):236–240

    Article  Google Scholar 

  31. Khoo LP, Alisantoso D (2003) Line balancing of PCB assembly line using immune algorithms. Eng Comput 19:92–100

    Article  Google Scholar 

  32. Lahdelma R,Nurminen J, Ruuth S (1986) Implementations of LP and MIP systems. EURO VIII; Lisbon also in Helsinki University of Technology, Systems Analysis Laboratory Research Reports A18

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Knuutila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rong, A., Toth, A., Nevalainen, O.S. et al. Modeling the machine configuration and line-balancing problem of a PCB assembly line with modular placement machines. Int J Adv Manuf Technol 54, 349–360 (2011). https://doi.org/10.1007/s00170-010-2920-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-010-2920-z

Keywords

Navigation