Skip to main content
Log in

A new mobile robot navigation using a turning point searching algorithm with the consideration of obstacle avoidance

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

When a robot goes from the initial position to the goal position in an unknown environment, we need the autonomous navigation for avoiding the obstacles and moving toward the goal position simultaneously. Among the various methods, we focus on the navigation method by using the geometric analysis with a laser scanner having the high resolution. When the robot turns around the obstacle, our proposed navigation method supplies the robot with the turning point for avoiding the obstacle and moving on the shortest path. At the same time, the next heading velocity is generated for the robot to have the maximum velocity by using the distance between the current position of the robot and the turning point. The robot executes the navigation in the unknown workspace which the various obstacles are randomly located. As the experimental results, we obtain the shortest path of the robot regardless of the obstacle’s shape in the unknown environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borenstein J, Koren Y (1988) Obstacle avoidance with ultrasonic sensors. IEEE J Robot Autom 4(2):213–218. doi:10.1109/56.2085

    Article  Google Scholar 

  2. Borenstein J, Borenstein J, Koren Y (1991) The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans Robot Autom 7(3):278–288. doi:10.1109/70.88137

    Article  Google Scholar 

  3. Dubins LE (1957) On curves of minimal length with a constraints on average curvature. Am J Math 79:497–516

    Article  MATH  MathSciNet  Google Scholar 

  4. Fox D, Burgard W, Thrun S (1997) The dynamic window approach to collision avoidance. IEEE Robot Autom Mag 4(1):23–33. doi:10.1109/100.580977

    Article  Google Scholar 

  5. Ibrahim M, McFetridge L (2001) The agoraphilic algorithm: a new optimistic approach for mobile robot navigation. In: Proc IEEE/ASME international conference on advanced intelligent mechatronics, vol 2, pp 1334–1339, vol 2. doi:10.1109/AIM.2001.936923

  6. Ibrahim M, Ibrahim M, Fernandes A (2004) Study on mobile robot navigation techniques. In: Fernandes A (ed) Proc IEEE international conference on industrial technology IEEE ICIT ’04, vol 1, pp 230–236, vol 1. doi:10.1109/ICIT.2004.1490288

  7. Koren Y, Borenstein J (1991) Potential field methods and their inherent limitations for mobile robot navigation. In: Proc IEEE international conference on robotics and automation, pp 1398–1404. doi:10.1109/ROBOT.1991.131810

  8. Kruusmaa M (2003) Global level path planning for mobile robots in dynamic environments. J Intell Robotics Syst 38(1):55–83. doi:10.1023/A:1026296011183

    Article  Google Scholar 

  9. Li Y, He K (2005) A novel obstacle avoidance and navigation method of outdoor mobile robot. In: Proc th international conference on advanced robotics ICAR ’05, pp 653–656. doi:10.1109/ICAR.2005.1507478

  10. Minguez J, Montano L (2000) Nearness diagram navigation (nd): a new real time collision avoidance approach. In: Proc IEEE/RSJ international conference on intelligent robots and systems (IROS 2000), vol 3, pp 2094–2100. doi:10.1109/IROS.2000.895280

  11. Minguez J, Montano L (2009) Extending collision avoidance methods to consider the vehicle shape, kinematics, and dynamics of a mobile robot. IEEE Trans Robot 25(2):367–381. doi:10.1109/TRO.2009.2011526

    Article  Google Scholar 

  12. Minguez J, Montano L, Simeon T, Alami R (2001) Global nearness diagram navigation (gnd). In: Proc ICRA robotics and automation IEEE international conference on, vol 1, pp 33–39. doi:10.1109/ROBOT.2001.932526

  13. Minguez J, Montano L, Santos-Victor J (2002) Reactive navigation for non-holonomic robots using the ego-kinematic space. In: Proc IEEE international conference on robotics and automation ICRA ’02, vol 3, pp 3074–3080. doi:10.1109/ROBOT.2002.1013699

  14. Seki H, Shibayama S, Kamiya Y, Hikizu M (2008) Practical obstacle avoidance using potential field for a nonholonmic mobile robot with rectangular body. In: Proc IEEE international conference on emerging technologies and factory automation ETFA 2008, pp 326–332. doi:10.1109/ETFA.2008.4638414

  15. Ulrich I, Borenstein J (2000) Vfh local obstacle avoidance with look-ahead verification. In: Proc IEEE international conference on robotics and automation ICRA ’00, vol 3, pp 2505–2511. doi:10.1109/ROBOT.2000.846405

  16. Yang X, Patel RV, Moallem M (2006) A fuzzy–braitenberg navigation strategy for differential drive mobile robots. J Intell Robotics Syst 47(2):101–124. doi:10.1007/s10846-006-9055-3

    Article  Google Scholar 

  17. You B, Qiu J, Li D (2008) A novel obstacle avoidance method for low-cost household mobile robot. In: Proc IEEE international conference on automation and logistics ICAL 2008, pp 111–116. doi:10.1109/ICAL.2008.4636130

  18. Zhang L, Ghosh BK (2000) Line segment based map building and localization using 2d laser rangefinder. In: Proc IEEE international conference on robotics and automation ICRA ’00, vol 3, pp 2538–2543. doi:10.1109/ROBOT.2000.846410

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyihwan Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, J., Park, K. A new mobile robot navigation using a turning point searching algorithm with the consideration of obstacle avoidance. Int J Adv Manuf Technol 52, 763–775 (2011). https://doi.org/10.1007/s00170-010-2749-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-010-2749-5

Keywords

Navigation