Advertisement

An optimization strategy based on a metamodel applied for the prediction of the initial blank shape in a deep drawing process

  • Abdessalem ChamekhEmail author
  • Souad BenRhaiem
  • Houda Khaterchi
  • Hedi BelHadjSalah
  • Ridha Hambli
ORIGINAL ARTICLE

Abstract

The transformation of the sheet into a product without failure and excess of material in a deep drawing operation means that the initial blanks should be correctly designed. Therefore, the initial blank design is a critical step in deep drawing design procedure. Consequently, an easy approach for engineers in predicting the initial blank shape is necessary to reduce wastage in material and to overcome the large time consumed in the classical approaches. Thus, the aim of the present investigation is to propose an automatic procedure for the quick sheet metal forming optimization. In fact, a metamodel will be build based on artificial neural networks which will be coupled then with an optimization procedure in order to predict the initial blank shape in a rectangular cup deep drawing operation. The metamodel is built from the finite element simulations using ABAQUS commercial code. This procedure allows a significant reduce of the CPU time compared to classical optimization one. The results show that the desired shape is in good agreement with the one calculated using the optimized blank shape.

Keywords

Metal forming Shape optimization FEM ANN modeling Inverse approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kleinermann JP, Ponthot JP (2003) Parameter identification and shape/process optimization in metal forming simulation. J Mater Process Technol 139:521–526CrossRefGoogle Scholar
  2. 2.
    Vogel JH, Lee D (1990) An analytical method for deep drawing process design. Int J Mech Sci 32:891–907CrossRefGoogle Scholar
  3. 3.
    TSi K (1997) PC-based blank design system for deep drawing irregularly shaped prismatic shells with arbitrarily shaped flange. J Mater Process Technol 63:89–94CrossRefGoogle Scholar
  4. 4.
    Chen X, Sowarby R (1992) The development of ideal blank shapes by the method of plane stress characteristics. Int J Mech Sci 34:159–166CrossRefGoogle Scholar
  5. 5.
    Gerdeen JC, Chen P (1989) Geometric mapping method of computer modelling of sheet metal forming. In Proc. Numiform Conf. Numerical Methods in Industrial Forming Processes. Balkema, Rotterdam, pp. 437–444Google Scholar
  6. 6.
    Kim SD, Park MH, Kim SJ, Seo DG (1998) Blank design and formability for non-circular deep drawing processes by the finite element method. J Mater Process Technol 75:94–99CrossRefGoogle Scholar
  7. 7.
    Chung K, Richmond O (1992) Ideal forming II. Sheet forming with optimum deformation. Int J Mech Sci 34:617–633zbMATHCrossRefGoogle Scholar
  8. 8.
    Park SH, Yoon JW, Yang DY, Kim YH, Optimum blank design in sheet metal forming by the deformation path iteration method. Int J Mech Sci 41:1217–1232Google Scholar
  9. 9.
    Lee CH, Hub H (1998) Blank design and strain estimates for sheet metal forming processes by a finite element inverse approach with initial guess of linear deformation. J Mater Process Technol 1–3:145–155CrossRefGoogle Scholar
  10. 10.
    Guo YQ, Batoz JL, Naceur H (2000) Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach. Comput Struct 78:133–148CrossRefGoogle Scholar
  11. 11.
    Donglai W, Zhenshan C, Chen J (2008) Optimization and tolerance prediction of sheet metal forming process using response surface model. Comput Mater Sci 42:228–233CrossRefGoogle Scholar
  12. 12.
    Ponthot JP, Kleinermann JP (2006) A cascade optimization methodology for automatic parameter identification and shape/process optimization in metal forming simulation. Comput Methods Appl Mech Eng 195:5472–5508zbMATHCrossRefGoogle Scholar
  13. 13.
    Se-Ho K (2002) BHF control algorithm with the design sensitivity analysis for the improvement of the deep drawn product. In Proc. Numisheet Conf. Jeju Island, KoreaGoogle Scholar
  14. 14.
    Matthias H (1999) Optimization of sheet metal forming processes using simulation programs. In Proc. Numisheet Conf. Besancon, FranceGoogle Scholar
  15. 15.
    Subir R (2002) An automated and flexible approach to optimal design of shape and process variables for stamping parts. In Proc. Numisheet Conf. Jeju Island, KoreaGoogle Scholar
  16. 16.
    Bahloul R, Ben-Elechi PA (2006) Optimization of springback predicted by experimental and numerical approach by using response surface methodology. J Mater Process Technol 173:101–110CrossRefGoogle Scholar
  17. 17.
    Abendroth M, Kuna M (2006) Identification of ductile damage and fracture parameters from the small punch test using neural networks. Eng Fract Mech 73:710–725CrossRefGoogle Scholar
  18. 18.
    Hambli R, Chamekh A, BelHadjSalah H (2006) Real-time deformation of structure using finite element and neural networks in virtual reality application. Finite Elem Anal Des 42:985–991CrossRefGoogle Scholar
  19. 19.
    Chamekh A, BelHadjSalah H, Hambli R (2008) Inverse technique identification of material parameters using finite element and neural network computation. Int J Adv Manuf Technol. doi: 10.1007/s00170-008-1809-6 Google Scholar
  20. 20.
    Zhou D, Wagoner RH (1993) Development and application of sheet forming simulations. In Proceedings of the NUMISHEET’93 pp. 3–18Google Scholar
  21. 21.
    Abaqus (2001) Theory manual, standard user's manual and explicit user's manual, version 6.2, Hibbit, Karson & Sorensen, IncGoogle Scholar
  22. 22.
    Chamekh A (2007) Optimisation de procédés de mise en forme par les réseaux de neurones artificiel. Thèse de doctorat en co-tutelle. ENIM/ISTIA, TunisieGoogle Scholar
  23. 23.
    Padmanabhana R, Oliveira MC, Alvesb JL, Menezesa LF (2007) Influence of process parameters on the deep drawing of stainless steel. Finite Elem Anal Des 43:1062–1067CrossRefGoogle Scholar
  24. 24.
    Aguir H, Chamekh A, BelHadjSalah H, Dogui A, Hambli R (2008) Identification of constitutive parameters using hybrid ANN multiobjective optimization procedure. Int J Mater Form. doi: 10.1007/s12289-008-0008-1 zbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Abdessalem Chamekh
    • 1
    Email author
  • Souad BenRhaiem
    • 1
  • Houda Khaterchi
    • 1
  • Hedi BelHadjSalah
    • 1
  • Ridha Hambli
    • 2
  1. 1.Laboratoire de Génie MécaniqueEcole Nationale d’Ingénieurs de MonastirMonastirTunisia
  2. 2.Institute PRISME–Polytech’OrléansCedex 2France

Personalised recommendations