Advertisement

Investigation on the effects of laser power and scanning speed on polypropylene diode transmission welds

  • Ismaïl Hadriche
  • Elhem Ghorbel
  • Neïla Masmoudi
  • Giuseppe CasalinoEmail author
ORIGINAL ARTICLE

Abstract

Diode laser transmission welding was well established as a leading technique for industrial applications of joining plastics. The weld soundness of plastics depends on several variables like the non-isothermal crystallization, the germs growth rate, the dimensions of the heat-affected zone induced by recrystallization. Firstly, this paper proves the reliability of a numerical model based on the finite difference method at calculating the soundness variables for diode laser welding of polypropylene thermoplastic polymer. The numerical model was validated by microscopy observation of experimental polypropylene welds. Then a parametric study on the effects of the laser power and welding speed on the weld soundness variables is presented through a number of plots of the main process variables against time. The overall investigation gives a detailed picture of the influence of laser power and welding speed on the weld soundness from a microstructure point of view.

Keywords

Laser diode Transmission welding Polypropylene Weld soundness Parametric investigation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kurosaki Y (2005) Radiative heat transfer in plastic welding process. J Quant Spectrosc Radiat Transfer 93:25–41CrossRefGoogle Scholar
  2. 2.
    Boglea A, Olowinsky A, Gillner A (2007) Fiber laser welding for packaging of disposable polymeric microfluidic-biochips. Appl Surf Sci 254:1174–1178CrossRefGoogle Scholar
  3. 3.
    Haberstroh E, Hoffmann WM (2007) Laser welding of micro plastic parts. International Society for Optical Engineering (SPIE), Proceedings of Photonics West Conference, San Jose (CA), USAGoogle Scholar
  4. 4.
    Herziger G, Schloms R (1995) IR Lasers as tools for the future. Infrared Phys Technol 36:401–406CrossRefGoogle Scholar
  5. 5.
    Coelho JMP, Abreu MA, Pires MC (2000) High-speed laser welding of plastic films. Opt Lasers Eng 34:385–395CrossRefGoogle Scholar
  6. 6.
    Potente H, Korte J, Becker F (1999) Laser transmission welding of thermoplastics: analysis of the heating phase. J Reinf Plast Compos 18:914–920Google Scholar
  7. 7.
    Bachmann F (2003) Industrial applications of high power diode lasers. Appl Surf Sci 208–209:125–136CrossRefGoogle Scholar
  8. 8.
    Ghorbel E, Casalino G, Abed S (2009) Laser diode transmission welding of polypropylene: geometrical and microstructure characterisation of weld. J Mater Design 30:2745–2751CrossRefGoogle Scholar
  9. 9.
    Mubarak Y, Harkin-Jones EMA, Martin PJ, Ahmad M (2001) Modeling of non-isothermal crystallization kinetics of isotactic polypropylene. Polyme 42:3171–3182CrossRefGoogle Scholar
  10. 10.
    Albano C, Papa J, González E, Navarro O, González R (2003) Temperature and crystallinity profiles in polyolefines isothermal and non-isothermal solidification processes. Eur Polyme J 39:1215–1222CrossRefGoogle Scholar
  11. 11.
    Poitou A, Ammar A (2001) Cristallisation induite par écoulement ou par déformation d’un polymère-une approche thermodynamique. Mech Solids and Struct 329:5–11zbMATHGoogle Scholar
  12. 12.
    Masubuchi Y, Watanabe K, Nagatake W, Takimoto J-I, Koyama K (2001) Thermal analysis of shear induced crystallization by the shear flow thermal rheometer: isothermal crystallization of polypropylene. Polyme 42:5023–5027CrossRefGoogle Scholar
  13. 13.
    Albano C, Papa J, Ichazo M, González J, Ustariz C (2003) Application of different macrokinetic models to the isothermal crystallization of PP-talc blends. Compos Struct 62:291–302CrossRefGoogle Scholar
  14. 14.
    Coccorullo I, Pantani R, Titomanlio G (2003) Crystallization kinetics and solidified structure in iPP under high cooling rates. Polyme 44:307–318CrossRefGoogle Scholar
  15. 15.
    Casalino G, Ghorbel E (2008) Numerical model of CO2 laser welding of thermoplastic polymers. J Mater Process Technol 207:63–71CrossRefGoogle Scholar
  16. 16.
    Kneip JC, Martin B, Loredo A, Mattei S, Grevey D (2004) Heat transfer in semi-transparent materials during laser interaction. Mater Process Technol 155–156:1805–1809CrossRefGoogle Scholar
  17. 17.
    Majumdar P, Xia H (2007) Green’s function model for the analysis of laser heating of materials. Appl Math Modelling 31:1186–1200zbMATHCrossRefGoogle Scholar
  18. 18.
    Van Krevelen SDW (1990) Properties of polymer. Elsevier, AmsterdamGoogle Scholar
  19. 19.
    Abed S, Laurens P, Carrétéro C, Deschamps JR, Duval C (2001) Diode Laser Welding of Polymers: Microstructure of the Welded Zones for Polypropylene. ICALEO 2001 Congress Proc, Jacksonville, USAGoogle Scholar
  20. 20.
    Zhu X, Li Y, Yan D, Fang Y (2001) Crystallization behavior of partially melting isotactic polypropylene. Polyme 42:9217–9222CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Ismaïl Hadriche
    • 1
    • 2
  • Elhem Ghorbel
    • 2
  • Neïla Masmoudi
    • 1
  • Giuseppe Casalino
    • 3
    Email author
  1. 1.LASEM LR99ES36Ecole Nationale d’Ingénieurs de Sfax (ENIS)SfaxTunisia
  2. 2.L2MGC EA4114Université de Cergy Pontoise (UCP)Cergy Pontoise CedexFrance
  3. 3.DIMeGBariItaly

Personalised recommendations