Advertisement

Multi-objective optimization of pulsed gas metal arc welding process based on weighted principal component scores

  • Anderson P. Paiva
  • Sebastião C. Costa
  • Emerson J. Paiva
  • Pedro Paulo BalestrassiEmail author
  • João R. Ferreira
ORIGINAL ARTICLE

Abstract

Most welding processes present large sets of correlated quality characteristics. With this particularity in mind, we present a multi-objective optimization technique based on Principal Component Analysis (PCA) and response surface methodology (RSM). This two-fold technique utilizes PCA to factorize the original welding responses. The original responses—obtained through a Central Composite Design—are then replaced by the resulting principal component scores. The technique’s advantage is that it reduces the data set and still considers the correlation among the responses. Quite often, however, the first principal component alone cannot explain the amount of variance–covariance structure of the welding responses. In this paper, we remedy this shortfall by proposing an objective function established in terms of the most significative principal component scores (weighted by their respective eigenvalues). Experimental results were obtained with a multiresponse pulsed gas metal arc welding process. These results, when compared with other strategies of multiresponse combination, verify the adequacy of our proposed approach.

Keywords

Multi-objective optimization Response surface methodology (RSM) Principal Component Analysis (PCA) Pulsed gas metal arc welding (P-GMAW) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wu FC (2005) Optimization of correlated multiple quality characteristics using desirability function. Qual Eng 17(1):119–126CrossRefGoogle Scholar
  2. 2.
    Chiao H, Hamada M (2001) Analyzing experiments with correlated multiple responses. J Qual Technol 33(4):451–465Google Scholar
  3. 3.
    Box GEP, Hunter WG, MacGregor JF, Erjavec J (1973) Some problems associated with the analysis of multiresponse data. Technometrics 15(1):33–51zbMATHCrossRefGoogle Scholar
  4. 4.
    Murugan N, Gunaraj V (2005) Prediction and control of weld bead geometry and shape relationships in submerged arc welding of pipes. J Mater Process Technol 168:478–487CrossRefGoogle Scholar
  5. 5.
    Kannan T, Murugan N (2006) Effect of Flux Cored Arc Welding Process parameters on duplex stainless steel clad quality. J Mater Process Technol 176:230–239CrossRefGoogle Scholar
  6. 6.
    Gunaraj V, Murugan N (2000) Prediction and optimization of weld bead volume for the submerged arc process—part 2. Weld J 79(11):331–338Google Scholar
  7. 7.
    Darwish SM, Al-Dekhial SD (1999) Statistical models for spot welding of commercial aluminum sheets. Int J Mach Tools Manuf 39:1589–1610CrossRefGoogle Scholar
  8. 8.
    Benyounis KY, Olabi AG, Hashmi MSJ (2005) Effects of laser welding parameters on the heat input and weld-bead profile. J Mater Process Technol 164–165:978–985CrossRefGoogle Scholar
  9. 9.
    Vijian P, Arunachalam VP (2007) Modeling and multi objective optimization of LM24 aluminium alloy squeeze cast process parameters using genetic algorithm. J Mater Process Technol 186:82–86CrossRefGoogle Scholar
  10. 10.
    Correia DS, Ferraresi VA (2007) Welding process selection through a double criteria: operational costs and non-quality costs. J Mater Process Technol 184:47–55CrossRefGoogle Scholar
  11. 11.
    Busacca GP, Marseguerra M, Zio E (2001) Multiobjective optimization by genetic algorithms: application to safety systems. Reliab Eng Syst Saf 72(1):59–74CrossRefGoogle Scholar
  12. 12.
    Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12(4):214–219Google Scholar
  13. 13.
    Khuri AI, Conlon M (1981) Simultaneous optimization of multiple responses represented by polynomial regression functions. Technometrics 23(4):363–375zbMATHCrossRefGoogle Scholar
  14. 14.
    Liao HC (2005) Multi-response optimization using weighted principal components. Int J Adv Manuf Technol 27(7):720–725CrossRefGoogle Scholar
  15. 15.
    Fung CP, Kang PC (2005) Multi-response optimization in friction properties of PBT composites using Taguchi method and principal component analysis. J Mater Process Technol 170(3):602–610CrossRefGoogle Scholar
  16. 16.
    Fung CP (2006) Multi-response optimization of impact performances in fiber-reinforced polybutylene teraphthalate. J Thermoplast Compos Mater 19(2):191–205CrossRefGoogle Scholar
  17. 17.
    Tong LI, Wang CH, Chen HC (2005) Optimization of multiple responses using principal component technique for order preference by similarity to ideal solution. Int J Adv Manuf Technol 27:407–414CrossRefGoogle Scholar
  18. 18.
    Yih-Fong T (2007) A hybrid approach to optimize multiple performance characteristics of high-speed computerized numerical control milling tool steels. Mater Des 28:36–46Google Scholar
  19. 19.
    Bratchell N (1989) Multivariate response surface modeling by principal components analysis. J Chemom 3:579–588CrossRefGoogle Scholar
  20. 20.
    Nian CY, Yang WW, Tarng YS (1999) Optimization of turning operations with multiple performance characteristics. J Mater Process Technol 95:90–96CrossRefGoogle Scholar
  21. 21.
    Montgomery DC (2001) Design and analysis of experiments, 4th edn. Wiley, New YorkGoogle Scholar
  22. 22.
    Nash SG, Sofer (1996) A linear and nonlinear programming, 1st edn. McGraw-Hill, New YorkGoogle Scholar
  23. 23.
    Köksoy O, Doganaksoy T (2003) Joint optimization of mean and standard deviation using response surface methods. J Qual Technol 35(3):239–252Google Scholar
  24. 24.
    Johnson RA, Wichern D (2002) Applied multivariate statistical analysis, 5th edn. Prentice-Hall, New JerseyGoogle Scholar
  25. 25.
    Peres-Neto PR, Jackson DA, Somers KM (2005) How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput Stat Data Anal 49(4):974–997zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Bartlett MS (1954) A note on the multiplying factor for various χ 2 approximations. J R Stat Soc 16:296–298zbMATHMathSciNetGoogle Scholar
  27. 27.
    Jackson DA (1993) Stopping rules in principal component analysis: a comparison of heuristical and statistical approaches. Ecology 74:341–347Google Scholar
  28. 28.
    Lawley DN (1956) Test of the significance for the latent roots of covariance and correlation matrices. Biometrika 43:128–136zbMATHMathSciNetGoogle Scholar
  29. 29.
    Todeschini R (1997) Data correlation, number of significant principal components and shape of molecules. The K correlation index. Anal Chim Acta 348(1–3):419–430CrossRefGoogle Scholar
  30. 30.
    Paiva AP, Ferreira JR, Balestrassi PP (2007) A multivariate hybrid approach applied to AISI 52100 hardened steel turning optimization. J Mater Process Technol 189:26–35CrossRefGoogle Scholar
  31. 31.
    Paiva AP, Paiva EJ, Ferreira JR, Balestrassi PP, Costa SC (2009) A multivariate mean square error optimization of AISI 52100 hardened steel turning. Int J Adv Manuf Technol. doi: 10.1007/s00170-008-1745-5 Google Scholar
  32. 32.
    Lasdon LS, Jain ADA, Ratner M (1978) Design and testing of a generalized reduced gradient code for nonlinear programming. ACM Trans Math Softw 4(1):34–50zbMATHCrossRefGoogle Scholar
  33. 33.
    Chen MC, Fan SS (2002) Tolerance evaluation of minimum zone straightness using non-linear programming techniques: a spreadsheet approach. Comput Ind Eng 43(3):437–453CrossRefMathSciNetGoogle Scholar
  34. 34.
    Praveen P, Yarlagadda PKDV, Kang MJ (2005) Advancements in pulsed gas metal arc welding. J Mater Process Technol 164–165:1113–1119CrossRefGoogle Scholar
  35. 35.
    Ghosh PK, Dorn L, Hübner M, Goyal VK (2007) Arc characteristics and behaviour of metal transfer in pulsed current GMA welding of aluminium alloy. J Mater Process Technol 94:163–175CrossRefGoogle Scholar
  36. 36.
    Dorn WS (1961) On Lagrange multipliers and inequalities. Oper Res 9(1):95–104zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Karaoğlu S, Seçgin A (2008) Sensitivity analysis of submerged arc welding process parameters. J Mater Process Technol 202:500–507CrossRefGoogle Scholar
  38. 38.
    Sarigül AS, Seçgin A (2004) A study on the application of the acoustic design sensitivity analysis of vibration bodies. Appl Acoust 65:1037–1056CrossRefGoogle Scholar
  39. 39.
    Kim IS, Jeong YJ, Son IJ, Kim IJ, Kim JY, Kim IK, Yaragada PKDV (2003) Sensitivity analysis for process parameters influencing weld quality in robotic GMA welding process. J Mater Process Technol 140:676–681CrossRefGoogle Scholar
  40. 40.
    Kim IS, Son IJ, Yan YS, Yaragada PKDV (2003) Sensitivity analysis for process parameters in GMA welding processes using a factorial design method. Int J Mach Tools Manuf 43:763–769CrossRefGoogle Scholar
  41. 41.
    Myers RH, Montgomery DC (2002) Response surface methodology–process and product optimization using designed experiments (2nd ed.), John Wiley & SonsGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Anderson P. Paiva
    • 1
  • Sebastião C. Costa
    • 1
  • Emerson J. Paiva
    • 1
  • Pedro Paulo Balestrassi
    • 1
    Email author
  • João R. Ferreira
    • 1
  1. 1.Industrial Engineering InstituteFederal University of ItajubaItajubaBrazil

Personalised recommendations