Titanium alloys are known as difficult-to-machine materials, especially at higher cutting speeds, due to their several inherent properties such as low thermal conductivity and their high reactivity with cutting tool materials, which present a low thermal conductivity. In this paper, a finite element analysis (FEA) of machining for Ti-6Al-4V is presented. In particular, the thermodynamical constitutive equation in FEA is applied for both workpiece material and tool material. Cutting temperature and tool wear depth are predicted. The comparison between the predicted and experimental cutting temperature and tool wear depth are presented and discussed. The results indicated that a good prediction accuracy of both principal cutting temperature and tool wear depth can be achieved by the method of FEA with thermodynamical constitutive equation.