Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 1: holistic design approach, design considerations and specifications



High-accuracy three-dimensional miniature components and microstructures are increasingly in demand in the sector of electro-optics, automotive, biotechnology, aerospace and information-technology industries. A rational approach to mechanical micro machining is to develop ultra-precision machines with small footprints. In part 1 of this two-part paper, the-state-of-the-art of ultra-precision machines with micro-machining capability is critically reviewed. The design considerations and specifications of a five-axis ultra-precision micro-milling machine—UltraMill—are discussed. Three prioritised design issues: motion accuracy, dynamic stiffness and thermal stability, formulate the holistic design approach for UltraMill. This approach has been applied to the development of key machine components and their integration so as to achieve high accuracy and nanometer surface finish.


Precision machines design Micro milling Miniature mechanical components Five-axis machine tool Bench-top micro machine tool 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ehmann KF, Bourell D, Culpepper ML, Hodgson TJ, Kurfess TR, Madou M, Rajurkar K, De Vor RE (2005) International assessment of research and development in micromanufacturing. World Technology Evaluation Center, Baltimore, MarylandGoogle Scholar
  2. 2.
    Liu X, DeVor RE, Kapoor SG, Ehmann KF (2004) The mechanics of machining at the microscale: assessment of the current state of the science. J Manuf Sci Eng. Trans ASME 126(4):666–678. doi:10.1115/1.1765115 CrossRefGoogle Scholar
  3. 3.
    Chae J, Park SS, Freiheit T (2006) Investigation of micro-cutting operations. Int J Mach Tools Manuf 46(3–4):313–332. doi:10.1016/j.ijmachtools.2005.05.015 CrossRefGoogle Scholar
  4. 4.
    Filiz S, Conley CM, Wasserman MB, Ozdoganlar OB (2007) An experimental investigation of micro-machinability of copper 101 using tungsten carbide micro-endmills. Int J Mach Tools Manuf 47(7–8):1088–1100. doi:10.1016/j.ijmachtools.2006.09.024 CrossRefGoogle Scholar
  5. 5.
    Friedrich CR, Vasile MJ (1996) Development of micromilling process for high-aspect-ratio microstructure. J Microelectromech Syst 5(1):33–38. doi:10.1109/84.485213 CrossRefGoogle Scholar
  6. 6.
    Annual report of the Fraunhofer Institute of Production Technology IPT, 2003Google Scholar
  7. 7.
    Weule H, Hüntrup V, Tritschler H (2001) Micro-cutting of steel to meet new requirements in miniaturization. Ann CIRP 50(1):61–64. doi:10.1016/S0007-8506(07)62071-X CrossRefGoogle Scholar
  8. 8.
    Takeuchi Y, Suzukawa H, Kawai T, Sakaida Y (2006) Creation of ultraprecision microstructures with high aspect ratio. Ann CIRP 56(1):107–110. doi:10.1016/S0007-8506(07)60377-1 CrossRefGoogle Scholar
  9. 9.
    Weck M, Hennig J, Hilbing R (2001) Precision cutting processes for manufacturing of optical components. Proc SPIE 4440:145–151. doi:10.1117/12.448034 CrossRefGoogle Scholar
  10. 10.
    Brinksmeier E, Riemer O, Stern R Machining of Precision Parts and Microstructures. Proceedings of the 10th International Conference on Precision Engineering (ICPE), Initiatives of Precision Engineering at the Beginning of a Millennium, July 18–20, 2001, Yokohama, Japan: S. 3-1Google Scholar
  11. 11.
    MASMICRO website, (Accessed on 25th May 2008)
  12. 12.
    Kern Micro- und Feinwerktechnik GmbH. website: (Accessed on 25th May 2008)
  13. 13.
    Sodick. Website: (Accessed on 25th May 2008)
  14. 14.
    Brecher C, Klar R, Wenzel C Development of a high precision miniature milling machine. Proceedings of the 3rd International Conference on Multi-Material Micro Manufacture, 4M 2007, 327–330Google Scholar
  15. 15.
    Makino. Website: (Accessed on 25th May 2008)
  16. 16.
    Kugler GH website: (Accessed on 25th May 2008)
  17. 17.
    Fanuc. Website: (Accessed on 25th May 2008)
  18. 18.
    Precitech, Inc. website: (Accessed on 25th May 2008)
  19. 19.
    Moore Nanotechnology System website: (Accessed on 25th May 2008)
  20. 20.
    Tanaka M (2001) Development of desktop machining microfactory. Riken Rev 34:46–49Google Scholar
  21. 21.
    Kussul E, Baidyk T, Ruiz-Huerta L, Caballero-Ruiz A, Velasco G, Kasatkina L (2002) Development of micro machine tool prototypes for microfactories. J Micromech Microeng 12(6):795–812. doi:10.1088/0960-1317/12/6/311 CrossRefGoogle Scholar
  22. 22.
    Okazaki Y, Mishima N, Ashida K (2004) Microfactory—concept, history, and developments. J Manuf Sci Eng. Trans ASME 126(4):837–844CrossRefGoogle Scholar
  23. 23.
    Vogler MP, Liu X, Kapoor SG, Devor RE, Ehmann KF. Development of Meso-scale Machine Tool (MMT) Systems, Society of Manufacturing Engineers MS n MS02-181, 2002, 1–9Google Scholar
  24. 24.
    Bang YB, Lee KM, Oh S (2005) 5-Axis micro milling machine for machining micro parts. Int J Adv Manuf Technol 25:888–894. doi:10.1007/s00170-003-1950-1 CrossRefGoogle Scholar
  25. 25.
    Lee SW, Mayor R, Ni J (2006) Dynamic analysis of a mesoscale machine tool. J Manuf Sci Eng Trans ASME 128(1):194–203CrossRefGoogle Scholar
  26. 26.
    Li H, Lai X, Li C, Lin Z, Miao J, Ni J (2008) Development of meso-scale milling machine tool and its performance analysis. Front Mech Eng China 3(1):59–65. doi:10.1007/s11465-008-0005-6 CrossRefGoogle Scholar
  27. 27.
    Nanowave. website: (Accessed on 25th May 2008)
  28. 28.
    Bohez ELJ (2002) Five-axis milling machine tool kinematic chain design and analysis. Int J Mach Tools Manuf 42(4):505–520. doi:10.1016/S0890-6955(01)00134-1 CrossRefGoogle Scholar
  29. 29.
    Chen FC (2001) On the structural configuration synthesis and geometry of machine centers. J Mech Eng Sci 215(6):641–652Google Scholar
  30. 30.
    Remus Tutunea-Fatan O, Feng H (2004) Configuration analysis of five-axis machine tools using a generic kinematic model. Int J Mach Tools Manuf 44(11):1235–1243. doi:10.1016/j.ijmachtools.2004.03.009 CrossRefGoogle Scholar
  31. 31.
    Bryan J (1990) International status of thermal error research. Ann CIRP 39(2):645–656. doi:10.1016/S0007-8506(07)63001-7 CrossRefMathSciNetGoogle Scholar
  32. 32.
    Otten G, De Vries TJA, Van Amerongen J, Rankers AM, Gaal EW (1997) Linear motor motion control using a learning feedforward controller. IEEE/ASME Trans Mechatron 2(3):179–187. doi:10.1109/3516.622970 CrossRefGoogle Scholar
  33. 33.
    Denkena B, Tönshoff HK, Li X, Imiela J, Lapp C (2000) Analysis and control/monitoring of the direct linear drive in end milling. Int J Prod Res 42(24):5149–5166. doi:10.1080/00207540412331299611 CrossRefGoogle Scholar
  34. 34.
    Schellekens P, Rosielle N (1998) Design for precision: current status and trends. Ann CIRP 47(2):557–584. doi:10.1016/S0007-8506(07)63243-0 CrossRefGoogle Scholar
  35. 35.
    Sriyotha P, Nakamoto K, Sugai M, Yamazaki K (2006) Development of 5-axis linear motor driven super-precision machine. Ann CIRP 55(1):381–384. doi:10.1016/S0007-8506(07)60440-5 CrossRefGoogle Scholar
  36. 36.
    Ikawa N, Donaldson RR, Kormanduri R, König W, Aachen TH, Mckeown PA, Moriwaki T, Stowers IF (1991) Ultraprecision metal cutting—the past, the present and the future. Ann CIRP 40(2):587–594. doi:10.1016/S0007-8506(07)61134-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  1. 1.Advanced Manufacturing and Enterprise Engineering (AMEE) Department, School of Engineering and DesignBrunel UniversityUxbridgeUK
  2. 2.UPM LtdSwindonUK

Personalised recommendations