Skip to main content
Log in

Deposition and focused ion beam milling of anticorrosive CrC coatings on tool steel substrates

  • SPECIAL ISSUE - ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

For micro replication, the base of a die should be ductile and the surface layer that will undergo processing should have a good machining response to various tool-making processes. At the same time, the resulting working surfaces of the tooling cavities should be hard; having low roughness, low wettability and high erosion resistance. To achieve such diverse properties, nano-crystalline CrC coatings deposited onto 12% Cr tool steel were investigated in this research. To verify the properties of such coatings various metallographic techniques were applied. In particular, the corrosion resistance was studied by means of potentiodynamic anodic polarisation. A scanning transmission electron microscopy analysis of the structure was performed on samples prepared with focused ion beam (FIB) machining. The mechanical properties and grain size distribution were determined and statistically analysed. In addition, X-ray diffraction, scanning electron microscopy and atomic force microscopy were used in studying the surface properties of these coatings. To investigate the response of the CrC coatings to micro- and nano-structuring technologies with high specific energy, a series of rectangular trenches were produced by FIB milling. The effects of the ion beam current, exposure time and ion fluence on the sputtering yield and roughness of the produced micro-structures were especially investigated. Some essential parameter windows for performing FIB milling with relatively high sputtering rates, higher than 1 µm/min, and at the same time achieving the best possible surface integrity were determined during the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shishkov R et al (2004) Journal of Material Processing and Technology 157 - 158:410–414

    Article  Google Scholar 

  2. Shishkov R, Lisichkova E (1995) A general model for vacuum condensates and vacuum diffusive coatings. Vacuum 46(11):1337–1346. doi:10.1016/0042-207X(95)00026-7

    Article  Google Scholar 

  3. Restrepo E et al (2004) Braz J Phys 34(no.4B):1748–1751. doi:10.1590/S0103-97332004000800043

    Article  Google Scholar 

  4. Lamastra FR et al (2006) Surf Coat Tech 200:6172–6175. doi:10.1016/j.surfcoat.2005.11.013

    Article  Google Scholar 

  5. Gomez MA et al (2005) Surf Coat Tech 200:1819–1824. doi:10.1016/j.surfcoat.2005.08.060

    Article  Google Scholar 

  6. Li G et al (2005) Tsinghua Sci Technol 10(6):690–698. doi:10.1016/S1007-0214(05)70137-1

    Article  Google Scholar 

  7. Barshilia HC, et al (2004) v. 72:241-248

  8. Yang O et al (2004) Surf Coat Tech 177–178:204–208. doi:10.1016/j.surfcoat.2003.09.033

    Article  Google Scholar 

  9. Braic M et al (2003) J Optoelectronics Adv Mater 5:1399–1404

    Google Scholar 

  10. Mendibide C et al (2006) Surf Coat Tech 201:4119–4124. doi:10.1016/j.surfcoat.2006.08.013

    Article  Google Scholar 

  11. Suresha SJ et al (2006) Mater Sci Eng A 429:252–260. doi:10.1016/j.msea.2006.05.068

    Article  Google Scholar 

  12. Gorokhovsky V et al (2006) Surf Coat Tech 201:3732–3747. doi:10.1016/j.surfcoat.2006.09.007

    Article  Google Scholar 

  13. Kayani A et al (2006) Surf Coat Tech 201:4460–4466. doi:10.1016/jsurfcoat.2006.08.049

    Google Scholar 

  14. Ducros C, et al (2005) 4 M Conference, Karlsruhe. pp. 177-180

  15. Ochiai C et al (2001) High resolution organic resists for charged particle lithography. J Vac Sci Technol B 19:933. doi:10.1116/1.1349205

    Article  Google Scholar 

  16. Loeschner H et al (2002) Large-field ion optics for projection and proximity printing and for maskless lithography (ML2). Proc SPIE 4688:595–606. doi:10.1117/12.472336

    Article  Google Scholar 

  17. Lalev G et al (2008) Data preparation for FIB machining of complex 3D structures. Proc. IMechE. Part B 222(1):67–76

    Article  Google Scholar 

  18. Gomez MA et al (2005) Surf. & Coat. Tech. 200(5-6):1819–1824

    Article  Google Scholar 

  19. Li W. et al (2007) Patterning of amorphous and polycrystalline Ni78B14Si8 with a focused ion beam. Appl Surf Sci, issue 12:5404-5410, 15 April

    Google Scholar 

  20. Popov K et al (2006) Micromilling: material microstructure effects. IMechE Part B 220(11):1807–1813

    Article  Google Scholar 

  21. Platzgummer E et al (2006) Simulation of ion beam direct structuring for 3D nanoimprint template fabrication. Microelectron. Eng. 83:936–939. doi:10.1016/j.mee.2006.01.140

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Minev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minev, R., Ilieva, M., Kettle, J. et al. Deposition and focused ion beam milling of anticorrosive CrC coatings on tool steel substrates. Int J Adv Manuf Technol 47, 29–35 (2010). https://doi.org/10.1007/s00170-009-2078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-009-2078-8

Keywords

Navigation