The berth scheduling problem with customer differentiation: a new methodological approach based on hierarchical optimization

  • G. K. D. SaharidisEmail author
  • M. M. Golias
  • M. Boile
  • S. Theofanis
  • M. G. Ierapetritou


The berth scheduling problem deals with the assignment of vessels to berth space in a container terminal. Defining berth schedules in container terminal operations translates in meeting different objectives that are often non-commensurable and gaining an improvement on one objective often causes degrading performance on the others. In this paper the discrete space and dynamic arrival berth scheduling problem is studied and formulated for the first time via a hierarchical optimization framework, using two levels of hierarchy that differentiate between two conflicting objectives terminal operators face when defining vessel to berth assignments. For the resolution of this problem an interactive algorithm is developed based on the k-th best algorithm for the case where multi-objective functions are considered in the upper level. Computational examples showed that the proposed algorithm gives optimal or near optimal solutions that are comparable to the ones obtained by its single level formulation counterpart.


Container terminal operations Berth scheduling Multi-objective optimization Hierarchical optimization Bi-level k-th best algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abo-Sinna MA, Baky IA (2007) Interactive balance space approach for solving multi-level multi-objective programming problems. Inf Sci 177(16):3397–3410. doi: 10.1016/j.ins.2007.02.005 zbMATHCrossRefGoogle Scholar
  2. 2.
    Bard JF (1983) An efficient point algorithm for a linear two-stage optimization problem. Oper Res 31(4):670–684. doi: 10.1287/opre.31.4.670 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bialas FW, Karwan HM (1984) Two-level linear programming. Manage Sci 30(8):1004–1020. doi: 10.1287/mnsc.30.8.1004 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bialas W, Karwan M (1978) Multilevel linear programming. Technical Report 78-1, State University of New York at Buffalo. Operations Research ProgramGoogle Scholar
  5. 5.
    Boile M, Theofanis S, Golias MM (2008) A λ-opt based heuristic for the discrete berth scheduling problem. In proceedings of the 10th International Conference on Application of Advanced Technologies in Transportation. Athens, GreeceGoogle Scholar
  6. 6.
    Chankong V, Haimes YY (1983) Multi-objective decision making theory and methodology. North-Holland AmsterdamGoogle Scholar
  7. 7.
    Chang SJ, Mackett LR (2006) A bi-level model of the relationship between transport and residential location. Transp Res Part B Methodological 40(2):123–146. doi: 10.1016/j.trb.2005.02.002 CrossRefGoogle Scholar
  8. 8.
    Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, New YorkzbMATHGoogle Scholar
  9. 9.
    Elster K-H (1993) Modern mathematical methods of optimization. Akademie, BerlinzbMATHGoogle Scholar
  10. 10.
    Galperin EA (1992) Non scalarized multi-objective global optimization. J Optim Theory Appl 75(1):69–85. doi: 10.1007/BF00939906 zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Galperin EA (1997) Pareto analysis vis-à-vis balance space approach in multi-objective global optimization. J Optim Theory Appl 93(3):533–545. doi: 10.1023/A:1022639028824 zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gao Z, Wu J, Sun H (2005) Solution algorithm for the bi-level discrete network design problem. Transp Res Part B Methodological 39(6):479–495. doi: 10.1016/j.trb.2004.06.004 CrossRefGoogle Scholar
  13. 13.
    Goldberg DE (1989) Genetic algorithms in search, optimization, and machine-learning. Addison-Wesley, ReadingzbMATHGoogle Scholar
  14. 14.
    Golias MM (2007) The discrete and continuous berth allocation problem: models and algorithms. Dissertation, Rutgers UniversityGoogle Scholar
  15. 15.
    Golias MM, Theofanis S, Boile M, Taboada HA (2009) A multi-objective decision and analysis approach for the berth scheduling problem. Int. J. Inf Technol Project Manage (Forthcoming)Google Scholar
  16. 16.
    Golias MM, Boile M, Theofanis S (2009) An adaptive time window partitioning based algorithm for the discrete and dynamic berth scheduling problem. J Transp Res Rec (Forthcoming)Google Scholar
  17. 17.
    Guan Y, Cheung RK (2004) The berth allocation problem: models and solution methods. OR-Spectrum 26(1):75–92. doi: 10.1007/s00291-003-0140-8 zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Guan Y, Xiao W-Q, Cheung RK, Li C-L (2002) A multiprocessor task scheduling model for berth allocation: heuristic and worst case analysis. Oper Res Lett 30(5):343–350. doi: 10.1016/S0167-6377(02)00147-5 zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Gümus ZH, Floudas CA (2005) Global optimization of mixed-integer bilevel programming problems. Comput Manage Sci 2(3):181–212. doi: 10.1007/s10287-005-0025-1 CrossRefGoogle Scholar
  20. 20.
    Hansen P, Oguz C, Mladenovic N (2008) Variable neighborhood search for minimum cost berth allocation. Eur J Oper Res 191(3):636–649. doi: 10.1016/j.ejor.2006.12.057 zbMATHCrossRefGoogle Scholar
  21. 21.
    Hooker NJ (1998) Constraint satisfaction methods for generating valid cuts. Available Online as:
  22. 22.
    Imai A, Nishimura E, Papadimitriou S (2001) The dynamic berth allocation problem for a container port. Transp Res Part B 35:401–417. doi: 10.1016/S0191-2615(99)00057-0 CrossRefGoogle Scholar
  23. 23.
    Imai A, Nishimura E, Papadimitriou S (2003) Berth allocation with service priority. Transp Res Part B 37:437–457. doi: 10.1016/S0191-2615(02)00023-1 CrossRefGoogle Scholar
  24. 24.
    Imai A, Zhang J-T, Nishimura E, Papadimitriou S (2007) The berth allocation problem with service time and delay time objectives. Marit Econ Logistics 9:269–290. doi: 10.1057/palgrave.mel.9100186 CrossRefGoogle Scholar
  25. 25.
    Imai A, Chen HC, Nishimura E, Papadimitriou S (2008) The simultaneous berth and quay crane allocation problem. Transp Res Part E 44(5):900–920. doi: 10.1016/j.tre.2007.03.003 CrossRefGoogle Scholar
  26. 26.
    Kim KH, Moon KC (2003) Berth scheduling by simulated annealing. Transp Res Part B 37:541–560. doi: 10.1016/S0191-2615(02)00027-9 CrossRefGoogle Scholar
  27. 27.
    Lin S, Kernighan BW (1973) An effective heuristic algorithm for the traveling-salesman problem. Oper Res 21:498–516. doi: 10.1287/opre.21.2.498 zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Miesel F, Bierwirth C (2009) Heuristics for the integration of crane productivity in the berth allocation problem. Transp Res Part E 45(1):196–209. doi: 10.1016/j.tre.2008.03.001 CrossRefGoogle Scholar
  29. 29.
    Monaco FM, Samara M (2007) The berth allocation problem: a strong formulation solved by a lagrangean approach. Transport Sci 41(2):265–280. doi: 10.1287/trsc.1060.0171 CrossRefGoogle Scholar
  30. 30.
    Moorthy R, Teo C-P (2006) Berth management in container terminal: the template design problem. OR-Spectrum 28(4):495–518. doi: 10.1007/s00291-006-0036-5 zbMATHCrossRefGoogle Scholar
  31. 31.
    Nishizaki I, Sakawa M (1999) Stackelberg solutions to multiobjective two level linear programming problems. J Optim Theory Appl 103(1):161–182. doi: 10.1023/A:1021729618112 zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Pardalos MP, Du D-Z (1998) Handbook of combinatorial optimization: Vol: 1–3, Springer, New YorkGoogle Scholar
  33. 33.
    Park MY, Kim HK (2003) A scheduling method for berth and quay cranes. Oper Res Spectr 25(1):1–23. doi: 10.1007/s00291-002-0109-z SpringerzbMATHCrossRefGoogle Scholar
  34. 34.
    Pinedo LM (2008) Scheduling: Theory, Algorithms, and Systems, 3rd edn. Springer, New YorkzbMATHGoogle Scholar
  35. 35.
    Rabadi G, Anagnostopoulos GC, Mollaghasemi M (2007) A heuristic algorithm for the just-in-time single machine scheduling problem with setups: a comparison with simulated annealing. Int J Adv Manuf Technol 32:326–335. doi: 10.1007/s00170-005-0333-1 CrossRefGoogle Scholar
  36. 36.
    Rao JR, Papalambros PY (1989) A non-linear programming continuation strategy for one parameter design optimization problems. Proceedings of ASME Design Automation Conference, Montreal, Quebec, Canada, Sept. 17-20: 77-89.Google Scholar
  37. 37.
    Remde S, Cowling P, Dahal K, Colledge N (2007) Exact/Heuristic Hybrids Using rVNS and Hyperheuristics for Workforce Scheduling. Evolutionary Computation in Combinatorial Optimization. Springer Berlin/Heidelberg, pp.188–197Google Scholar
  38. 38.
    Saharidis GK, Ierapetritou MG (2009) Resolution method for mixed integer bi-level linear problems based on decomposition technique. J Glob Optim 44(1):29–51. doi: 10.1007/s10898-008-9291-0 zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Shi C, Lu J, Zhang G (2005) An extended Kuhn–Tucker approach for linear bi-level programming. Appl Math Comput 162(1):51–63. doi: 10.1016/j.amc.2003.12.089 zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Shi X, Xia H (1997) Interactive bi-level multi-objective decision making. J Oper Res Soc 48:943–949zbMATHCrossRefGoogle Scholar
  41. 41.
    Simaan M, Cruz JB (1973) On the Stackelberg strategy in non-zero-sum games. J Optim Theory Appl 11:533–555. doi: 10.1007/BF00935665 zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Taboada HA (2007) Multi-objective optimization algorithms considering objective preferences and solution clusters. Dissertation, Rutgers UniversityGoogle Scholar
  43. 43.
    Theofanis S, Boile M, Golias MM (2009) Container terminal berth planning: critical review of research approaches and practical challenges. J Transp Res RecGoogle Scholar
  44. 44.
    Vicente LN, Calamai PH (1994) Bilevel and multilevel programming: a bibliography review. J Glob Optim 5(3):291–306. doi: 10.1007/BF01096458 zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Xia H, Iz PH, Shi X (1996) Bi-level group decision and negotiation based on multi-criteria optimization and game theory, IEEE 2029-2034.Google Scholar
  46. 46.
    Zhang G, Lu J, Dillon T (2007) Decentralized multi-objective bilevel decision making with fuzzy demands. Knowl Base Syst 20:495–507. doi: 10.1016/j.knosys.2007.01.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • G. K. D. Saharidis
    • 1
    Email author
  • M. M. Golias
    • 2
  • M. Boile
    • 3
  • S. Theofanis
    • 1
  • M. G. Ierapetritou
    • 4
  1. 1.Center for Advanced Infrastructure and Transportation (CAIT)Freight and Maritime Program (FMP), Rutgers UniversityPiscatawayUSA
  2. 2.Department of Civil EngineeringMemphis UniversityMemphisUSA
  3. 3.Department of Civil and Environmental EngineeringFreight and Maritime Program (FMP), Rutgers UniversityPiscatawayUSA
  4. 4.Department of Chemical and Biomedical EngineeringRutgers UniversityPiscatawayUSA

Personalised recommendations