Skip to main content
Log in

Optimisation of machining parameters for hard machining: grey relational theory approach and ANOVA

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The present paper deals with experimental investigations carried out for machinability study of hardened steel and to obtain optimum process parameters by grey relational analysis. An orthogonal array, grey relations, grey relational coefficients and analysis of variance (ANOVA) are applied to study the performance characteristics of machining process parameters such as cutting speed, feed, depth of cut and width of cut with consideration of multiple responses, i.e. volume of material removed, surface finish, tool wear and tool life. Tool wear patterns are measured using optical microscope and analysed using scanning electron microscope and X-ray diffraction technique. Chipping and adhesion are main causes of wear. The optimum process parameters are calculated for rough machining and finish machining using grey theory and results are compared with ANOVA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park SH (1996) Robust design and analysis for quality engineering. Chapman & Hall, London

    Google Scholar 

  2. Phadke MS (1989) Quality engineering using robust design. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  3. Ghani JA, Choudhury IA, Hassan HH (2004) Application of Taguchi method in the optimisation of end milling parameters. J Mater Process Technol 145:84–92

    Article  Google Scholar 

  4. Nalbant N, Gökkaya H, Sur G (2007) Application of Taguchi method in the optimisation of cutting parameters for surface roughness in turning. Mater Des 28:1379–1385

    Google Scholar 

  5. Yang WH, Tarng YS (1998) Design optimisation of cutting parameters for turning operations based on Taguchi method. J Mater Process Technol 84:122–129

    Article  Google Scholar 

  6. Lin CL, Lin JL, Ko TC (2002) Optimisation of EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method. Int J Adv Manuf Technol 19:271–277

    Article  Google Scholar 

  7. Lin JL, Tang YS (1998) Optimisation of multi response process by Taguchi method with grey relational analysis. J Grey Syst 10(4):355–370

    Google Scholar 

  8. Deng J (1989) Introduction grey system. J Grey Syst 1:1–24

    MATH  Google Scholar 

  9. Deng J (1982) Control problem of grey systems. Syst Control Lett 5:258–294

    Google Scholar 

  10. Chan JWK, Tong TKL (2007) Multi-criteria material selection and end of life product strategy: Grey relational analysis approach. Mater Des 28:1539–1546

    Google Scholar 

  11. Lin C-T, Tsai H (2005) Hierarchical-clustering analysis based on grey relation grade. Int J Inf Manag Sci 16(1):95–105

    MATH  Google Scholar 

  12. Tosun N (2006) Determination of optimum parameters for multi performance characteristics in drilling by using grey relational analysis. Int J Adv Manuf Technol 28:450–455

    Article  Google Scholar 

  13. Lin JL, Lin JF (2006) Grey theory applied to evaluate the tribological performances of α-C:H (N) coating films prepared by differing the nitrogen content and the film thickness. Int J Adv Manuf Technol 27:845–853

    Article  Google Scholar 

  14. Narender Singh P, Raghukandan K, Pa BC (2004) Optimisation by grey relational analysis of EDM parameters on machining Al-10% Si Cp composites. J Mater Process Technol 155–156:1658–1661

    Article  Google Scholar 

  15. Kao PS, Hocheng H (2003) Optimisation of electrochemical polishing of stainless steel by grey relational analysis. J Mater Process Technol 140:255–259

    Article  Google Scholar 

  16. Lo SP (2002) The application of an ANFIS and grey system method in turning tool failure detection. Int J Adv Manuf Technol 19:564–572

    Article  Google Scholar 

  17. Ho CY, Lin ZC (2003) Analysis and application of grey relation and ANOVA in chemical mechanical polishing process parameters. Int J Adv Manuf Technol 21:10–14

    Article  Google Scholar 

  18. Turner JR, Thayer JF (2001) Introduction to analysis of variance. Sage, Beverly Hills, CA

    Google Scholar 

  19. Bogartz RS (1994) Introduction to analysis of variance. Praeger, Westport, CT

    MATH  Google Scholar 

  20. Krimpenis A, Fousekis A, Vosniakos G (2005) Assessment of sculptured surface milling strategies using design of experiments. Int J Adv Manuf Technol 25:444–453

    Article  Google Scholar 

  21. Öktem H, Erzurumlu T, Cöl M (2006) A study of the Taguchi optimization method for surface roughness in finish milling of mold surfaces. Int J Adv Manuf Technol 28:694–700

    Article  Google Scholar 

  22. Singh D, Venkateswara Rao P (2007) A surface roughness prediction model for hard turning process. Int J Adv Manuf Technol 32:1115–1124

    Article  Google Scholar 

  23. Koshy P, Dewes RC, Aspinwall DK (2002) High speed end milling of hardened tool steel (~58 HRC). J Mater Process Technol 127:266–273

    Article  Google Scholar 

  24. Dutta AK, Chattopadhyaya AB, Ray KK (2006) Progressive flank wear and machining performance of silver toughened alumina cutting tool inserts. Wear 261:885–895

    Article  Google Scholar 

  25. Arsecularatne JA, Zhang LC, Montross C, Mathew P (2006) On machining of hardened AISI D2 steel with PCBN tools. J Mater Process Technol 171:244–252

    Article  Google Scholar 

  26. Senthil Kumar A, Raja Durai A, Sornakumar T (2006) The effect of tool wear on tool life of alumina-based ceramic cutting tools while machining hardened martensitic ceramic cutting tools while machining hardened martensitic stainless steel. J Mater Process Technol 173:151–156

    Article  Google Scholar 

  27. Attanasio A, Gelfi M, Giardini C, Remino C (2006) Minimum quantity lubrication in turning: effect on tool wear. Wear 260:333–338

    Article  Google Scholar 

  28. Camuscu N, Aslan E (2005) A comparative study on cutting tool performance in end milling of AISI D3 tool steel. J Mater Process Technol 170:121–126

    Article  Google Scholar 

  29. Choudhury IA, See NL, Zukhairi M (2005) Machining with chamfered tools. J Mater Process Technol 170:115–120

    Article  Google Scholar 

  30. Su YL, Liu TH, Su CT, Yao SH, Kao WH, Cheng KW (2006) Wear of CrC-coated carbide tools in dry machining. J Mater Process Technol 171:108–117

    Article  Google Scholar 

  31. Dewas RC, Aspinwall DK (1997) A review of ultra high speed milling of hardened steels. J Mater Process Technol 69:1–17

    Article  Google Scholar 

  32. El-Wardany TI, Kishawy HA, Elbestawi MA (2000) Surface integrity of die materials in high speed machining, part 1: micro graphical analysis. Trans ASME J Manuf Sci Eng 122:620–631

    Article  Google Scholar 

  33. El-Wardany TI, Kishawy HA, Elbestawi MA (2000) Surface integrity of die materials in high speed machining, part 2: micro hardness variations and residual stresses. Trans ASME J Manuf Sci Eng 122:632–641

    Article  Google Scholar 

  34. Özel T (2003) Modelling of hard part machining: effect of insert edge preparation in CBN cutting tools. J Mater Process Technol 141:284–293

    Article  Google Scholar 

  35. Kato H, Shintani K, Sumiya H (2002) Cutting performance of a binder less sintered cubic boron nitride tool in the high speed milling of grey cast iron. J Mater Process Technol 127:217–221

    Article  Google Scholar 

  36. Urbanski JP, Kosy P, Dewas RC, Aspinwall DK (2000) High speed machining of moulds and dies for net shape manufacture. Mater Des 21:395–402

    Google Scholar 

  37. ISO 8688-2 (1989) Tool life testing in milling, part 1 and part 2; end milling

  38. Oxley PLB (1989) The mechanics of machining: an analytical approach to assessing machinability. Horwood, Chichester, England

    Google Scholar 

  39. Shaw MC (2003) The size effect in metal cutting. Sadhana-Academy Proc Eng Sci 28:875–896

    Google Scholar 

  40. Kishawy HA, Elbestawi MA (1998) Effects of edge preparation and cutting speed on surface integrity of die materials in hard machining. Proc Int Mech Eng Congr Exp MED 8:269–276

    Google Scholar 

  41. Kishawy HA, Elbestawi MA (1997) Effects of process parameters on chip formation when machining hardened steel. Proc Int Mech Eng Congr Exp 6–2:13–20 Dallas, Texas ASME-MED

    Google Scholar 

  42. Oishi K (1995) Built up edge elimination in mirror cutting of hardened steel. Trans ASME J Eng Ind 117(1):62–66

    Article  MathSciNet  Google Scholar 

  43. Nelson S, Schueller JK, Tlusty J (1998) Tool wear in milling hardened die steel. Trans ASME J Manuf Sci Eng 120:669–673

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bala Murugan Gopalsamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopalsamy, B.M., Mondal, B. & Ghosh, S. Optimisation of machining parameters for hard machining: grey relational theory approach and ANOVA. Int J Adv Manuf Technol 45, 1068 (2009). https://doi.org/10.1007/s00170-009-2054-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00170-009-2054-3

Keywords

Navigation