Skip to main content
Log in

Estimation of heat source model parameters for twin-wire submerged arc welding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Heat source models are mathematical expressions that represent the generation term in the fundamental heat transfer equation. Investigators have successfully demonstrated different heat source models for single-wire welding. The present investigation estimates the double ellipsoidal heat source model parameters for twin-wire application. The heat source model parameters have been estimated for varying set of welding conditions. It has been found that the heat source model parameters for twin-wire welding are different from the single-wire welding. Moreover, the heat source model parameters also depend upon process parameters. Effects of welding current, electrode polarity and wire diameter on the size of heat source model have been presented. Flux consumption is also found to play a significant role in deciding the heat source model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenthal D (1946) The theory of moving sources of heat and its application to metal treatments. Trans ASME 68:849–866

    Google Scholar 

  2. Pavelic V, Tanbakuchi R, Uyehara OA, Myers PS (1969) Experimental and computed temperature histories in gas tungsten-arc welding of thin plates. Weld J 48(7):295s–305s

    Google Scholar 

  3. Eager TW, Tasi NS (1983) Temperature fields produced by travelling distributed heat source. Weld J 12:346s–354s

    Google Scholar 

  4. Wahab MA, Painter MJ, Davies MH (1998) The prediction of the temperature distribution and weld pool geometry in the gas metal arc welding process. J Mater Process Technol 77(1):233–239. doi:10.1016/S0924-0136(97)00422-6

    Article  Google Scholar 

  5. Murugan S, Kumar PV, Raj B, Bose MSC (1998) Temperature distribution during multipass welding of plates. Int J Press Vessels Pip 75(12):891–905. doi:10.1016/S0308-0161(98)00094-5

    Article  Google Scholar 

  6. Choo RTC, Szekely J, Westhoff RC (1992) On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles. Metall Trans 23B:357–384

    Google Scholar 

  7. Fan HG, Tsai HL, Na SJ (2001) Heat transfer and fluid flow in a partially or fully penetrated weld pool in gas tungsten arc welding. Int J Heat Mass Transfer 44:417–428. doi:10.1016/S0017-9310(00)00094-6

    Article  MATH  Google Scholar 

  8. Duranton P, Devaux J, Robin V, Gilles P, Bergheau JM (2004) 3D modeling of multipass welding of 316L stainless steel pipe. J Mater Process Technol 153:457–463. doi:10.1016/j.jmatprotec.2004.04.128

    Article  Google Scholar 

  9. Goldak J, Chakravati A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans 15B:299–305

    Google Scholar 

  10. Wen SW, Hilton P, Farrugia DCJ (2001) Finite element modelling of a submerged arc welding process. J Mater Process Technol 119(1):203–209. doi:10.1016/S0924-0136(01)00945-1

    Article  Google Scholar 

  11. Nguyen NT, Ohta A, Matsuoka K, Suzuki N, Maeda Y (1999) Analytical solutions for transient temperature of semi-infinite body subjected to 3-D moving heat sources. Weld J 78(8):265–274

    Google Scholar 

  12. Ule RL, Joshi Y, Sedy EB (1990) A new technique for three dimensional transient heat transfer computations of autogenous arc welding. Metall Trans 21B:1033–1047

    Google Scholar 

  13. De A, Maiti SK, Walsh C, Bhadeshia HDKH (2003) Finite element modelling of laser spot welding. Sci Technol Weld Join 8(5):377–384. doi:10.1179/136217103225005570

    Article  Google Scholar 

  14. Fang H, Meng Q, Xu W, Ji S (2005) New general double ellipsoid heat source model. Sci Technol Weld Join 10(3):361–368. doi:10.1179/174329305X40705

    Article  Google Scholar 

  15. Slováček M, Diviš V, Junek L, Ochodek V (2005) Numerical simulation of the welding process—distortion and residual stress prediction, heat source model determination. Weld World 49:15–29

    Google Scholar 

  16. Kermanpur A, Shamanian M, Esfahani Yeganeh V (2008) Three-dimensional thermal simulation and experimental investigation of GTAW circumferentially butt-welded Incoloy 800 pipes. J Mater Process Technol 199:295–303. doi:10.1016/j.jmatprotec.2007.08.009

    Article  Google Scholar 

  17. Hinkel JE, Forsthoefel FW (1976) High current density SAW with twin electrodes. Weld J 3:175–180

    Google Scholar 

  18. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, New York, pp 25–61

    MATH  Google Scholar 

  19. Sharma A., Arora N. and Gupta S. R., Simulation of behaviours of leading and trailing arcs during submerged twin arc welding, International Institute of Welding, Document No. ICRA-2005-IND-06

  20. Lancaster JF (1984) The physics of welding. Pergamon, UK, pp 242–243

    Google Scholar 

  21. Sharma A, Arora N, Mishra BK (2008) Mathematical modeling of flux consumption during twin-wire welding. Int J Adv Manuf Technol 8(11–12):1114–1124. doi:10.1007/s00170-007-1181-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A., Chaudhary, A.K., Arora, N. et al. Estimation of heat source model parameters for twin-wire submerged arc welding. Int J Adv Manuf Technol 45, 1096 (2009). https://doi.org/10.1007/s00170-009-2046-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00170-009-2046-3

Keywords

Navigation