Skip to main content
Log in

Managing lean DRC systems with demand uncertainty: an analytical approach

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper considers a dual resource constrained manufacturing system with identical parallel work cells, which operates in an environment with demand uncertainty. The system is evaluated under the principles of lean manufacturing: zero lead times, zero inventories, and zero defects. The study shows that group-dispatching rules and labor assignment policies have a significant impact on manufacturing productivity. By properly managing the changeover-per-unit output ratios and operator assignments, the available capacity for value adding activities is increased and manufacturing cost is reduced. Results of an experiment show that labor requirements can be reduced from 5% to 46% and, machine utilization can be reduced from 2% to 14%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Panizolla R (1998) Applying the lessons learned from 27 lean manufacturers: the relevance of relationships management. Int J Prod Econ 55(3):223–346. doi:10.1016/S0925-5273(98)00066-8

    Article  Google Scholar 

  2. Feld W (2000) Lean manufacturing: tools, techniques, and how to use them. St. Lucie, Boca Raton

    Google Scholar 

  3. Bartezzaghi E, Verganti R, Zotteri G (1999) Measuring the impact of asymmetric demand distributions on inventories. Int J Prod Econ 60–61:395–404. doi:10.1016/S0925-5273(98)00193-5

    Article  Google Scholar 

  4. Zotteri G (2000) The impact of distributions of uncertain lumpy demand on inventories. Prod Plann Contr 11(1):32–43. doi:10.1080/095372800232469

    Article  Google Scholar 

  5. Balakrishnan J, Cheng C (2007) Multi-period planning and uncertainty issues in cellular manufacturing: a review and future directions. Eur J Oper Res 117:281–309. doi:10.1016/j.ejor.2005.08.027

    Article  Google Scholar 

  6. Womack J, Jones D (2003) Lean thinking: banish waste and create wealth in your corporation, revised and updated. Free, New York

    Google Scholar 

  7. Ooijen H, Bertrand J (2003) The effects of a simple arrival rate control policy on throughput and work-in-process in production systems with workload dependent processing rates. Int J Prod Econ 85(1):61–68. doi:10.1016/S0925-5273(03)00086-0

    Article  Google Scholar 

  8. Williams G (1998) European stocking and supply systems. ICDP, Solihull

    Google Scholar 

  9. Browne J, Dubosis D, Rathmill K, Sethi S, Stecke K (1984) Classification of flexible manufacturing systems. FMS Mag 2(2):114–117

    Google Scholar 

  10. Malhotra M, Ritzman L (1990) Resource flexibility issues in multistage manufacturing. Decis Sci 21:673–690. doi:10.1111/j.1540-5915.1990.tb01243.x

    Article  Google Scholar 

  11. Morris J, Tersine R (1994) A simulation comparison of process and cellular layouts in a dual resource constrained environment. Comput Ind Eng 26(4):733–741. doi:10.1016/0360-8352(94)90008-6

    Article  Google Scholar 

  12. DeToni A, Tonchia S (1998) Manufacturing flexibility: a literature review. Int J Prod Res 36(6):1587–1617. doi:10.1080/002075498193183

    Article  Google Scholar 

  13. Cox T (1989) Toward the measurement of manufacturing flexibility. Prod Inventory Manag J, 1st Quarter, 68–72.

  14. Chan F (2004) Impact of operation flexibility and dispatching rules on the performance of a flexible manufacturing system. Int J Adv Manuf Technol 24:447–459. doi:10.1007/s00170-003-1594-1

    Article  Google Scholar 

  15. Scholl A, Klein R (1999) ULINO: optimally balancing U-shaped JIT assembly lines. Int J Prod Res 37(4):721–736. doi:10.1080/002075499191481

    Article  MATH  Google Scholar 

  16. Schonberger R (1982) Japanese manufacturing techniques: nine hidden lessons in simplicity. Free, New York

    Google Scholar 

  17. Monden Y (1983) Toyota production system: practical approach to production management. Engineering & Management, New York

    Google Scholar 

  18. Lu D (1986) Kanban, just-in-time at Toyota. Productivity, Cambridge

    Google Scholar 

  19. Wemmerlöv U, Hyer N (1989) Cellular manufacturing in the US industry: a survey of users. Int J Prod Res 27(9):1511–1530. doi:10.1080/00207548908942637

    Article  Google Scholar 

  20. Askin R, Standridge C (1993) Modeling and analysis of manufacturing systems. Wiley, New York

    MATH  Google Scholar 

  21. Wemmerlöv U, Hyer N (1986) Procedures for the part family/machine group identification problem in cellular manufacturing. J Oper Manag 6(2):125–147. doi:10.1016/0272-6963(86)90021-5

    Article  Google Scholar 

  22. Wemmerlöv U, Johnson D (2000) Empirical findings on manufacturing cell design. Int J Prod Res 38(3):481–507. doi:10.1080/002075400189275

    Article  MATH  Google Scholar 

  23. Johnson D, Wemmerlöv U (2004) Why does cell implementation stop? Factors influencing cell penetration in manufacturing plants. Prod Oper Manag 13(3):272–289

    Google Scholar 

  24. Gupta R, Tompkins J (1982) An examination of the dynamic behavior of part-families in group technology. J Oper Manag 20:73–86

    Google Scholar 

  25. Flynn B (1987) Repetitive lots: the use of a sequence-dependent set-up time scheduling procedure in group technology and traditional shops. J Oper Manag 7:203–216. doi:10.1016/0272-6963(87)90017-9

    Article  Google Scholar 

  26. Morris J, Tersine R (1990) A simulation analysis of factors influencing the attractiveness of group technology cellular layout. Manag Sci 36(12):1567–1578. doi:10.1287/mnsc.36.12.1567

    Article  Google Scholar 

  27. Shaffer S, Meredith J (1993) An empirically-based simulation study of functional versus cellular layouts with operations overlapping. Int J Oper Prod Manag 13(2):47–62. doi:10.1108/01443579310025303

    Article  Google Scholar 

  28. Gstettner S, Kuhn H (1996) Analysis of production control systems kanban and CONWIP. Int J Prod Res 34(11):3253–3273. doi:10.1080/00207549608905087

    Article  MATH  Google Scholar 

  29. Shingo S (1985) A revolution in manufacturing: the SMED system. Productivity, Cambridge

    Google Scholar 

  30. Esrock Y (1985) The impact of reduced setup time. Prod Inventory Manag J 26:94–101

    Google Scholar 

  31. Bahrami H (1992) The emerging flexible organisation: perspectives from silicon valley. Calif Manag Rev 34:33–52

    Google Scholar 

  32. Upton D (1995) Flexibility as process mobility: the management of plant capabilities for quick response manufacturing. J Oper Manag 12(3–4):205–224. doi:10.1016/0272-6963(95)00004-C

    Article  Google Scholar 

  33. Treleven M (1989) A review of the dual resource constraint system research. IIE Trans 21(3):279–287. doi:10.1080/07408178908966233

    Article  Google Scholar 

  34. Miltenburg J (2001) U-shaped work cells: a review of theory and practice. Int J Prod Econ 70(3):201–214. doi:10.1016/S0925-5273(00)00064-5

    Article  Google Scholar 

  35. Pegels C, Watrous C (2005) Application of the theory of constraints to a bottleneck operation in a manufacturing plant. J Manuf Technol Manag 16(3):302–311. doi:10.1108/17410380510583617

    Article  Google Scholar 

  36. Cesaní V, Steudel H (2005) A study of labor assignment flexibility in cellular manufacturing systems. Comput Ind Eng 48:571–591. doi:10.1016/j.cie.2003.04.001

    Article  Google Scholar 

  37. ElMaraghy H, Patel V, Abdallah I (2000) Scheduling of manufacturing systems under dual-resource constraints using genetic algorithms. J Manuf Syst 19(3):186–201. doi:10.1016/S0278-6125(00)80011-4

    Article  Google Scholar 

  38. Suresh N, Gaalman G (2000) Performance evaluation of cellular layouts: extension to DRC system contexts. Int J Prod Res 38(17):4393–4402. doi:10.1080/00207540050205172

    Article  MATH  Google Scholar 

  39. Nelson R (1967) Labor and machine limited production systems. Manag Sci 13(9):648–671. doi:10.1287/mnsc.13.9.648

    Article  Google Scholar 

  40. Nelson R (1968) Dual resource constrained series service systems. Oper Res 16(2):324–341. doi:10.1287/opre.16.2.324

    Article  Google Scholar 

  41. Miltenburg J, Wijngaard J (1994) The U-line balancing problem. Manag Sci 40(10):1378–1388. doi:10.1287/mnsc.40.10.1378

    Article  MATH  Google Scholar 

  42. Miltenburg J (1998) Balancing U-lines in a multiple U-line facility. Eur J Oper Res 109(1):1–23. doi:10.1016/S0377-2217(97)00169-0

    Article  MATH  Google Scholar 

  43. Miltenburg J (2002) Balancing and scheduling mixed-model U-shaped production lines. Int J Flex Manuf Syst 14(2):123–155. doi:10.1023/A:1014434117888

    Article  Google Scholar 

  44. Sparling D, Miltenburg J (1998) The mixed-model U-line balancing problem. Int J Prod Res 36(2):485–501. doi:10.1080/002075498193859

    Article  MATH  Google Scholar 

  45. Scholl A, Klein R (1999) Balancing assembly lines effectively—a computational comparison. Eur J Oper Res 114(1):50–58. doi:10.1016/S0377-2217(98)00173-8

    Article  MATH  Google Scholar 

  46. Urban T (1998) Note: optimal balancing of U-shaped assembly lines. Manag Sci 44(5):738–741. doi:10.1287/mnsc.44.5.738

    Article  MATH  Google Scholar 

  47. Aase G, Olson J, Schniederjans M (2004) U-shaped assembly line layouts and their impact on labor productivity: an experimental study. Eur J Oper Res 156:698–711. doi:10.1016/S0377-2217(03)00148-6

    Article  MATH  Google Scholar 

  48. Miltenburg J, Sparling D (1995) The U-line balancing problem: travel times and multiple U-lines. Working paper. McMaster University, Hamilton

  49. Sparling D (1995) Balancing just-in-time production units: the N U-line balancing problem. Working paper. McMaster University, Hamilton

  50. Treleven M, Elvers D (1985) An investigation of labor assignment rules in a dual-constrained job shop. J Oper Manag 6(1):51–68. doi:10.1016/0272-6963(85)90035-X

    Article  Google Scholar 

  51. Treleven M (1987) The timing of labor transfer in dual resource constrained system: ‘push’ vs ‘pull’ rules. Decis Sci 18(1):73–88. doi:10.1111/j.1540-5915.1987.tb01504.x

    Article  Google Scholar 

  52. Wirth G, Mahmoodi F, Mosier C (1993) An investigation of scheduling policies in a dual-constrained manufacturing cell. Decis Sci 24(4):761–788. doi:10.1111/j.1540-5915.1993.tb00488.x

    Article  Google Scholar 

  53. Russell R, Huang P, Leu Y (1991) A study of labor allocation strategies in cellular manufacturing. Decis Sci 23(3):594–611. doi:10.1111/j.1540-5915.1991.tb01283.x

    Article  Google Scholar 

  54. Kizil M, Özbayrak M, Papadopoulou T (2006) Evaluation of dispatching rules for cellular manufacturing. Int J Adv Manuf Technol 28(9):985–992. doi:10.1007/s00170-004-2439-2

    Article  Google Scholar 

  55. Baker K (1974) Introduction to sequencing and scheduling. Wiley, New York

    Google Scholar 

  56. Pinedo M (2001) Scheduling: theory, algorithms, and systems, 2nd edn. Pearson Education, New Jersey

    Google Scholar 

  57. Walleigh R (1986) What's your excuse for not using JIT? Harv Bus Rev 52:113–121

    Google Scholar 

  58. Vaithianathan R, McRoberts K (1982) On scheduling in GT environment. J Manuf Syst 1(2):149–155. doi:10.1016/S0278-6125(82)80025-3

    Article  Google Scholar 

  59. Reddy V, Narendran T (2003) Heuristics for scheduling sequence-dependent set-up jobs in flow line cells. Int J Prod Res 41(1):193–206. doi:10.1080/00207540210163973

    Article  MATH  Google Scholar 

  60. Mosier C, Elvers D, Kelly D (1983) Analysis of group technology scheduling heuristics. Int J Prod Res 22:857–875

    Article  Google Scholar 

  61. Mahmoodi F (1989) An investigation of dynamic group scheduling and releasing heuristics in cellular manufacturing. Ph.D. Dissertation. University of Minnesota, Minneapolis.

  62. Mahmoodi F, Dooley K, Starr P (1990) An investigation of dynamic group scheduling heuristics in a job shop manufacturing cell. Int J Prod Res 28:1695–1711. doi:10.1080/00207549008942824

    Article  Google Scholar 

  63. Wemmerlöv U, Vakharia A (1991) Job and family scheduling of a flow-line manufacturing cell: a simulation study. IIE Trans 23:383–393. doi:10.1080/07408179108963871

    Article  Google Scholar 

  64. Frazier G (1996) An evaluation of group scheduling heuristics in a flow-line manufacturing cell. Int J Prod Res 34(4):959–976. doi:10.1080/00207549608904945

    Article  MATH  MathSciNet  Google Scholar 

  65. Ponnambalam S, Aravindan P, Raghu Rami Reddy K (1999) Analysis of group-scheduling heuristics in a manufacturing cell. Int J Adv Manuf Technol 15(12):914–932. doi:10.1007/s001700050149

    Article  Google Scholar 

  66. Philipoon P, Fry T (1992) Capacity-based order review/release strategies to improve manufacturing performance. Int J Prod Res 30(11):2559–2572. doi:10.1080/00207549208948176

    Article  Google Scholar 

  67. Hendry L, Kingsman B, Cheung P (1998) The effect of workload control (WLC) on performance in make-to-order companies. J Oper Manag 16(1):63–75. doi:10.1016/S0272-6963(97)00011-9

    Article  Google Scholar 

  68. Haskose A, Kingsman B, Worthington D (2004) Performance analysis of make-to-order manufacturing systems under different workload control regimes. Int J Prod Econ 90(2):169–186. doi:10.1016/S0925-5273(03)00052-5

    Article  Google Scholar 

  69. Norris J (1997) Markov Chains. Cambridge University Press, United Kingdom

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas L. McWilliams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McWilliams, D.L., Tetteh, E.G. Managing lean DRC systems with demand uncertainty: an analytical approach. Int J Adv Manuf Technol 45, 1017–1032 (2009). https://doi.org/10.1007/s00170-009-2030-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-009-2030-y

Keywords

Navigation