Skip to main content
Log in

Dynamic compensation of modeling uncertainties and disturbances of a precision planar motion stage based on sliding mode observer

  • SPECIAL ISSUE - ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper discusses dynamic modeling, controller design, simulation, and experiment for a non-contact three-degree-of-freedom planar motion stage for precision measurement and control of positions. A simplified model of this planar motion stage driven by four permanent magnetic linear motors is established on an assumption that the influence of the small yawing motion on the electromagnetic characteristics of the planar motion stage can be neglected. Overall control strategy, including a fine-tuned proportional integral derivative component to yield basic dynamic performance and a component derived from sliding mode observer to estimate and compensate for modeling uncertainties and disturbances, is developed and implemented in a digital signal processor. Simulation study and experimental results of using a three-axis interferometer as the position sensor are presented to verify the effectiveness of the suggested dynamic compensation strategy and tracking performance of the non-contact planar motion stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomita Y, Koyanagawa Y, Satoh F (1994) A surface motor-driven precision positioning system. Precis Eng 16(3):184–191. doi:10.1016/0141-6359(94)90123-6

    Article  Google Scholar 

  2. Kim WJ, Trumper DL (1998) High-precision magnetic levitation stage for photolithography. Precis Eng 22(2):66–77. doi:10.1016/S0141-6359(98)00009-9

    Article  Google Scholar 

  3. Jung KS, Baek YS (2003) Precision stage using a non-contact planar actuator based on magnetic suspension technology. Mechatronics 13(8–9):981–999. doi:10.1016/S0957-4158(03)00011-4

    Article  Google Scholar 

  4. Gao W, Dejima S, Yanai H, Katakura K, Kiyono S, Tomita Y (2004) A surface motor-driven planar motion stage integrated with an XYθz surface encode for precision positioning. Precis Eng 28(3):329–337. doi:10.1016/j.precisioneng.2003.12.003

    Article  Google Scholar 

  5. Shinno H, Hashizume H, Yoshioka H, Komatsu K, Shinshi T, Sato K (2004) XYθ Nano-positioning table system for a mother machine. Ann CIRP 53(1):337–340. doi:10.1016/S0007-8506(07)60711-2

    Article  Google Scholar 

  6. Dejima S, Gao W, Shimizu H, Kiyono S, Tomita Y (2005) Precision positioning of a five degree-of-freedom planar motion stage. Mechatronics 15(8):969–987. doi:10.1016/j.mechatronics.2005.03.002

    Article  Google Scholar 

  7. Tan KK, Tang KZ, Dou HF, Huang SN (2002) Development of an integrated and open-architecture precision motion control system. Control Eng Pract 10(7):757–772. doi:10.1016/S0967-0661(01)00167-8

    Article  Google Scholar 

  8. Yao B, Al-Majed M, Tomizuka M (1997) High-performance robust motion control machine tools: an adaptive robust control approach and comparative experiments. IEEE-ASME T Mech 2(2):63–76

    Article  Google Scholar 

  9. Dejima S, Gao W, Katakura K, Kiyono S, Tomita Y (2005) Dynamic modeling, controller design and experiment validation of a planar motion stage for precision positioning. Precis Eng 29(3):263–271. doi:10.1016/j.precisioneng.2004.11.005

    Article  Google Scholar 

  10. Dian SY, Gao W, Horie K, Kiyono S (2006) Precision measurement and decoupled control of a planar motion stage. J CSME 27(5):567–574

    Google Scholar 

  11. Chen X, Fukuda T, Young KD (2000) A new nonlinear robust disturbance observer. Syst Control Lett 41(3):189–199. doi:10.1016/S0167-6911(00)00056-6

    Article  MATH  MathSciNet  Google Scholar 

  12. Edwards C, Spurgeon SK (1998) Sliding mode control: theory and applications. Taylor & Francis, London

    Google Scholar 

  13. Tai TL (2006) Sliding mode control with perturbation compensation for a class of uncertain systems. Proc Inst Mech Eng Part I J Syst Control Eng 220:585–593

    Article  Google Scholar 

  14. Cao JY, Zhu Y, Wang JS, Yin WS, Duan GH, Wang CH (2006) A three-degree-of-freedom motion controller for synchronous permanent-magnet planar motors. Proc Chin Soc Electr Eng 26(17):143–147

    Google Scholar 

  15. Zinober ASI (1991) Deterministic control of uncertain system. Reregrinus, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songyi Dian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dian, S., Arai, Y. & Gao, W. Dynamic compensation of modeling uncertainties and disturbances of a precision planar motion stage based on sliding mode observer. Int J Adv Manuf Technol 46, 899–912 (2010). https://doi.org/10.1007/s00170-009-2009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-009-2009-8

Keywords

Navigation