Skip to main content
Log in

Investigation of surface treatment effects in micro-injection-moulding

  • SPECIAL ISSUE - ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Micro-injection-moulding as a replication method is one of the key technologies for micro-manufacture. An important stage in micro-injection-moulding which can affect the accuracy and mechanical properties of the produced components is part de-moulding. During this stage, part-mould forces can cause a variety of defects to micro-parts, including stress marks, deformation, fracture and stretching of the polymer structures. Therefore, in this paper, the effects of different surface treatments on the de-moulding behaviour of parts with micro-features are investigated. In particular, the de-moulding of a representative micro-part was studied as a function of two different tool coatings, diamond-like carbon and silicon carbide, in combination with four process parameters, employing the design of experiment approach. In addition, the results obtained using different combinations of process parameters were analysed to identify the best processing conditions in regards to de-moulding behaviour of polycarbonate and acrylonitrile butadiene styrene micro-parts when utilising these two coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nestler J et al (2006) A new technology platform for fully integrated polymer based micro optic fluidic systems, in 4 M 2006—Second International Conference on Multi-Material Micro Manufacture. Elsevier, Oxford, pp 35–38

    Google Scholar 

  2. Yao D, Kim B (2004) Scaling issues in miniaturization of injection molded parts. J Manuf Sci Eng 126(4):733–739. doi:10.1115/1.1813479

    Article  Google Scholar 

  3. Haberstroh E, Brandt M (2002) Determination of mechanical properties of thermoplastics suitable for micro systems. Macromol Mater Eng 287(12):881–888. doi:10.1002/mame.200290023

    Article  Google Scholar 

  4. Navabpour P et al (2006) Evaluation of non-stick properties of magnetron-sputtered coatings for moulds used for the processing of polymers. Surf Coat Tech 201(6):3802–3809. doi:10.1016/j.surfcoat.2006.06.042

    Article  Google Scholar 

  5. Menges G, Mohren P (eds) (1993) How to make injection molds, 2nd edn. Hanser Gardner, New York

  6. Kwak S et al (2003) Layout and sizing of ejector pins for injection mould design using the wavelet transform. Proc IME B J Eng Manufact 217(4):463–473

    Article  MathSciNet  Google Scholar 

  7. Heyderman LJ et al (2000) Flow behaviour of thin polymer films used for hot embossing lithography. Microelectronic Eng 54(3–4):229–245. doi:10.1016/S0167-9317(00) 00414-7

    Article  Google Scholar 

  8. Daintith J (2005) The dictionary of science, 5th edn. OUP Oxford, Oxford

    Google Scholar 

  9. Pouzada AS, Ferreira EC, Pontes AJ (2006) Friction properties of moulding thermoplastics. Polym Test 25(8):1017–1023. doi:10.1016/j.polymertesting.2006.06.009

    Article  Google Scholar 

  10. Sasaki T et al (2000) An experimental study on ejection forces of injection molding. Precis Eng 24(3):270–273. doi:10.1016/S0141-6359(99) 00039-2

    Article  Google Scholar 

  11. Bataineh OM, Klamecki BE (2005) Prediction of local part-mold and ejection force in injection molding. J Manuf Sci Eng Trans ASME 127(3):598–604. doi:10.1115/1.1951785

    Article  Google Scholar 

  12. Pontes AJ, Pouzada AS (2004) Ejection force in tubular injection moldings. Part I: effect of processing conditions. Polym Eng Sci 44(5):891–897. doi:10.1002/pen.20080

    Article  Google Scholar 

  13. Pontes AJ et al (2005) Ejection force of tubular injection moldings. Part II: a prediction model. Polym Eng Sci 45(3):325–332. doi:10.1002/pen.20275

    Article  MathSciNet  Google Scholar 

  14. Crawford RJ (ed) (1987) Plastics engineering, 2nd edn. Pergamon, New York

  15. Namseok L, Young-Kyn K, Shinill K (2004) Temperature dependence of anti-adhesion between a stamper with sub-micron patterns and the polymer in nano-moulding processes. J Phys D Appl Phys 35:1624–1629

    Google Scholar 

  16. Pham GT, Colton JS (2002) Ejection force modeling for stereolithography injection molding tools. Polym Eng Sci 42(4):681–693. doi:10.1002/pen.10981

    Article  Google Scholar 

  17. Harris R, Newlyn H, Dickens P (2002) Selection of mould design variables in direct stereolithography injection mould tooling. Proc IME B J Eng Manufact 216(4):499–505

    Article  Google Scholar 

  18. Kinsella ME et al (2005) Experimental determination of friction coefficients between thermoplastics and rapid tooled injection mold materials. Rapid Prototyping J 11(3):167–173. doi:10.1108/13552540510601291

    Article  Google Scholar 

  19. Bacher W et al (1998) Fabrication of LIGA mold inserts. Microsyst Technol 4(3):117–119. doi:10.1007/s005420050110

    Article  MathSciNet  Google Scholar 

  20. Griffiths C et al (2007) Polymer inserts tooling for prototyping of micro fluidic components in micro injection moulding, in 4 M 2007. Proceedings of the 3 rd International Conference on Multi-material Micro Manufacture. Whittles, Dunbeath, pp 305–311

    Google Scholar 

  21. Mitterer C et al (2003) Industrial applications of PACVD hard coatings. Surf Coat Tech 163–164:716–722. doi:10.1016/S0257-8972(02) 00685-0

    Article  Google Scholar 

  22. Heinze M (1998) Wear resistance of hard coatings in plastics processing. Surf Coat Tech 105(1–2):38–44. doi:10.1016/S0257-8972(98) 00449-6

    Article  Google Scholar 

  23. Cunha L et al (2002) Performance of chromium nitride and titanium nitride coatings during plastic injection moulding. Surf Coat Tech 153(2–3):160–165. doi:10.1016/S0257-8972(01) 01690-5

    Article  Google Scholar 

  24. Sawyer WG et al (2003) A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 254(5–6):573–580

    Google Scholar 

  25. Haefliger D et al (2005) Dry release of all-polymer structures. Microelectronic Eng 78–79:88–92. doi:10.1016/j.mee.2004.12.013

    Article  Google Scholar 

  26. Dearnley PA (1999) Low friction surfaces for plastic injection moulding dies—an experimental case study. Wear 225–229(Part 2):1109–1113. doi:10.1016/S0043-1648(98)00417-7

    Article  Google Scholar 

  27. Van Stappen M et al (2001) Practice vs. laboratory tests for plastic injection moulding. Surf Coat Tech 142–144:143–145. doi:10.1016/S0257-8972(01) 01062-3

    Article  Google Scholar 

  28. Voevodin AA, Donley MS, Zabinski JS (1997) Pulsed laser deposition of diamond-like carbon wear protective coatings: a review. Surf Coat Tech 92(1–2):42–49. doi:10.1016/S0257-8972(97) 00007-8

    Article  Google Scholar 

  29. Heimberg JA, Wahl KJ, Singer IL (2001) Superlow friction behaviour of diamond like carbon coatings: Time and speed effects. Appl Phys Lett 78(17):2449. doi:10.1063/1.1366649

    Article  Google Scholar 

  30. Zanini S et al (2007) Characterisation of SiO x C y H z thin films deposited by low-temperature PECVD. Vacuum 82(2):290–293. doi:10.1016/j.vacuum.2007.07.001

    Article  MathSciNet  Google Scholar 

  31. Uddin M et al (2006) Interfacial adhesion of spin-coated thin adhesive film on silicon substrate for the fabrication of polymer optical waveguide. J Electron Mater 35(7):1558–1565. doi:10.1007/s11664-006-0149-2

    Article  Google Scholar 

  32. Grill A (2003) Diamond-like carbon coatings as biocompatible materials—an overview. Diam Relat Mater 12(2):166–170. doi:10.1016/S0925-9635(03) 00018-9

    Article  Google Scholar 

  33. Yang H, Kang S-W (2000) Improvement of thickness uniformity in nickel electroforming for the LIGA process. Int J Mach Tools Manuf 40(7):1065–1072. doi:10.1016/S0890-6955(99) 00107-8

    Article  Google Scholar 

  34. Kim SM, Kang S (2003) Replication qualities and optical properties of UV-moulded microlens arrays. J Phys D Appl Phys 36:2451–2456. doi:10.1088/0022-3727/36/20/005

    Article  Google Scholar 

  35. Tang PT et al (2006) Indirect tooling based on micromilling, electroforming and selective etching, in 4 M 2006. In Second International Conference on Multi-Material Micro Manufacture

  36. Hauert R (2003) A review of modified DLC coatings for biological applications. Diam Relat Mater 12(3–7):583–589

    Article  Google Scholar 

  37. Roy R (ed) (1990) A primer on the Taguchi method. Van Nostrand Reinhold, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Griffiths.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, C.A., Dimov, S.S., Brousseau, E.B. et al. Investigation of surface treatment effects in micro-injection-moulding. Int J Adv Manuf Technol 47, 99–110 (2010). https://doi.org/10.1007/s00170-009-2000-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-009-2000-4

Keywords

Navigation