Skip to main content

Advertisement

Log in

Internal energy minimization in biarc interpolation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

We optimize the interpolation of a piecewise G 1 biarc curve through a given sequence of points by means of an internal energy minimization model. A combination of bending and stretching energy, which we call internal energy, provides global control over the shape of the curve. Starting from an initial guess, we solve the minimization model using a quasi-Newton algorithm. The input data can include or exclude end tangents, or it may form a closed shape. Experiments indicate the effect of internal energy on the interpolation and demonstrate that the resulting curves are smooth and free of extraneous loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkhoff G, de Boor C (1965) Piecewise polynomial interpolation and approximation. In: Garabedian HL (ed) Approximation of functions. Elsevier, Amsterdam, pp 164–190

    Google Scholar 

  2. Bolton KM (1975) Biarc curves. Comput-Aided Des 7(2):89–92

    Article  Google Scholar 

  3. Broyden C (1970) The convergence of a class of double-rank minimization algorithms: 1. General considerations. IMA J Appl Math 6(1):76–90

    Article  MATH  MathSciNet  Google Scholar 

  4. Brunnett G, Hagen H, Santarelli P (1993) Variational design of curves and surfaces. Surv Math Ind 3:1–27

    MATH  MathSciNet  Google Scholar 

  5. de Boor C (2001) A practical guide to splines, revised edition. Springer, Berlin Heidelberg New York

    Google Scholar 

  6. Farin G (1999) NURBS: from projective geometry to practical use, 2nd edn. A K Peters, Wellesley

    MATH  Google Scholar 

  7. Farin G (2002) Curves and surfaces for CAGD: a practical guide, 5th edn. Academic, London

    Google Scholar 

  8. Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13(3):317–322

    Article  MATH  MathSciNet  Google Scholar 

  9. Goldfarb D (1970) A family of variable metric updates derived by variational means. Math Comput 24(109):23–26

    Article  MATH  MathSciNet  Google Scholar 

  10. Held M, Eibl J (2005) Biarc approximation of polygons within asymmetric tolerance bands. Comput-Aided Des 37(4):357–371

    Article  Google Scholar 

  11. Meek DS, Walton DJ (1992) Approximation of discrete data by G 1 arc splines. Comput-Aided Des 24(6):301–306

    Article  MATH  Google Scholar 

  12. Meek DS, Walton DJ (1993) Approximating quadratic NURBS curves by arc splines. Comput-Aided Des 25(6):371–376

    Article  MATH  Google Scholar 

  13. Ong CJ, Wong YS, Loh HT, Hong XG (1996) An optimization approach for biarc curve-fitting of B-spline curves. Comput-Aided Des 28(12):951–959

    Article  Google Scholar 

  14. Park H (2004) Error-bounded biarc approximation of planar curves. Comput-Aided Des 36(12):1241–1251

    Article  Google Scholar 

  15. Parkinson DB (1992) Optimised biarc curves with tension. Comput Aided Geom Des 9(3):207–218

    Article  MATH  MathSciNet  Google Scholar 

  16. Parkinson DB, Moreton DN (1991) Optimal biarc-curve fitting. Comput-Aided Des 23(6):411–419

    Article  MATH  Google Scholar 

  17. Piegl L, Tiller W (2002) Biarc approximation of NURBS curves. Comput-Aided Des 34(11):807–814

    Article  Google Scholar 

  18. Powell M (1976) Some global convergence properties of a variable metric algorithm for minimization without exact line searches. In: Cottle R, Lemke C (eds) Nonlinear programming, SIAM-AMS proceedings IX. SIAM, Philadelphia

    Google Scholar 

  19. Qiu H, Kai C, Yan L (1997) Optimal circular arc interpolation for NC tool path generation in curve contour manufacturing. Comput-Aided Des 29(11):751–760

    Article  Google Scholar 

  20. Shanno D (1970) Conditioning of quasi-Newton methods for function minimization. Math Comput 24(111):647–656

    Article  MathSciNet  Google Scholar 

  21. Su B, Liu D (1981) Computational geometry. Shanghai Science and Technology, Shanghai

    Google Scholar 

  22. Tseng Y-J, Chen Y-D, Liu C-C (2001) Numerically controlled machining of freeform curves using biarc approximation. Int J Adv Manuf Technol 17(11):783–790

    Article  Google Scholar 

  23. Wolfe P (1969) Convergence conditions for ascent methods. SIAM Rev 11(2):226–235

    Article  MATH  MathSciNet  Google Scholar 

  24. Yang X, Wang G (2001) Planar point set fairing and fitting by arc splines. Comput-Aided Des 33(1):35–43

    Article  Google Scholar 

  25. Yeung MK, Walton DJ (1994) Curve fitting with arc splines for NC tool path generation. Comput-Aided Des 26(11):845–849

    Article  MATH  Google Scholar 

  26. Yong J-H, Hu S-M, Sun J-G (1999) A note on approximation of discrete data by G 1 arc splines. Comput-Aided Des 31(14):911–915

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-wan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Tw., Kim, Yc., Suh, Jc. et al. Internal energy minimization in biarc interpolation. Int J Adv Manuf Technol 44, 1165–1174 (2009). https://doi.org/10.1007/s00170-009-1929-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-009-1929-7

Keywords

Navigation